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Measuring the Probability Density of Quantum Confined States
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We show that it is possible to measure the probability density of a quantum-confined state using
resonant magnetotunneling. We have measured the probability densities of the lowest three bound states
formed in a semiconductor nanostructure and show that they are eigenstates of a parabolic potential.

PACS nUmbers: 73.40.Gk, 73.40.Kp, 73.50.Jt

The solution to Schrodinger's equation for a given
potential consists of a set of energy eignvalues and
corresponding eigenfunctions, or wave functions.
Generally eigen values may be measured using spec-
troscopic techniques, but direct measurement of wave
functions is usually not possible. Recently it has been
demonstrated that it is possible to measure the wave
functions of quantum-confined states formed in nano-
structures formed on metallic surfaces [1,2]. In these
experiments a scanning tunneling microscope (STM) was
used both to fabricate the nanostructure and to probe
the wave functions of the bound states. Interestingly,
Crommie, Lutz, and Eigler [1] argue that while the wave
functions of bound states formed in STM nanostructures
may be measured, this is not possible for conventional
semiconductor nanostructures.

In this Letter we show that, contrary to this view, it
is possible to measure the wave functions of quantum-
confined states formed in a semiconductor heterostructure.
This is achieved by resonant magnetotunneling between
1D quantum-confined states. We have recently shown
[3] that the energy eigenvalues of these states may be
measured using resonant magnetotunneling. In this paper
we show that for an even smaller device in which the

lateral quantization is much stronger, it is also possible
to measure the probability density of the corresponding
eigenfunctions. Experimentally we measure the magnetic
field dependence of the tunnel current between an initial
and a final quantum-confined state. From this dependence
we may deduce the Fourier transform of the final state
wave function. In particular, we have measured the
probability density of the lowest three bound states of a
parabolic potential. These wave functions are well known
theoretically and used widely in physics; however, it has
not previously been possible to measure them directly.
Our technique is complementary to the STM work in that
we use a magnetic field (rather than spatial control) to
vary the overlap between initial and final states, and also
we are able to probe electronic states below the surface of
a structure.

Our experimental device is a resonant tunneling
diode with submicron lateral dimensions. Figure 1 is a
schematic diagram showing the device parameters and an
outline of the principles of operation. The device is fabri-
cated using optical lithography and selective wet etching
from a GaAs/A1As heterostucture grown by molecular
beam epitaxy. Full details of sample fabrication may be
found in Wang et al. [4]. The GaAs quantum well has
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FIG. 1. (a) A schematic diagram of the active region of our device. The top n GaAs is etched into the shape of a bar with
dimensions l, X lb. Depletion due to surface effects extends up to the dotted line. (b) Conduction band profile of the device
under an applied bias. A quasibound state is formed in the quantum well with confinement energy E~ (= 40 meV for our device).
For the doping profile used in our device, an accumulation layer is formed at the emitter barrier under an applied bias which has a
confinement energy Eo. The energy of the ith state in the emitter is thus Eo + (i + 1/2)hen, /2 and of the jth state in the well is
E& + (j + I/2)hto . Resonant tunneling via the jth state in the well is possible when V is adjusted (V' depends linearly on V)
so that it is aligned in energy with the i = 0 state in the emitter.
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width w = 9.0 nm and is formed between two A1As tun-
nel barriers of width b = 4.7 nm. Si-doped n-type GaAs
contact layers are formed on either side of the barriers.
Sidewall depletion due to pinning of the free surfaces
at midgap extends up to the dotted line [see Fig. 1(a)].
The physical dimensions I, X lb = 0.5 X 1.0 p,m, but
the electrically conducting area is much smaller due to
sidewall depletion; we estimate 50 X 600 nm .

The two AlAs tunnel barriers produce conventional
quantum well confinement along x. Under applied bias
electrons are also confined along x in the approximately
triangular potential well of the emitter accumulation layer.
Because of the submicron lateral dimensions, the motion
of electrons in the y direction is also quantized. A set
of i (i = 0, 1, 2, . . .) one-dimensional subbands is formed
in the emitter, and j (j = 0, 1, 2, . . .) one-dimensional
subbands in the well. We take the confining potential
along y to be parabolic, which we show below is
an excellent approximation. The energy separation of
the 1D subbands in the emitter and well is given by
Rcu, and h~, respectively, and the wave functions of the
ith and jth subbands by p,'(y) and p~ (y).

Figure 2 shows the low temperature (T = 0.3 K) I(V)
for this device in the presence of a magnetic field, 8,
oriented along z. For 8 = 0 T we observe additional
peaks (as compared with the large area diode —see inset
to Fig. 2) due to resonant tunneling via different 1D
subbands formed in the quantum well. Note that the
resonances in the small area diode occur at higher voltages
than for the large area diode. This is an electrostatic
effect that has been discussed previously [5]. As B is

progressively increased, the peak labeled j = 0 decreases
in amplitude, whereas that labeled j = 2 first decreases,
then increases, and is finally reduced to zero. Between
these two peaks a third peak appears which is absent at
B = 0 T. This is labeled j = 1 and is observed clearly
in the range 2 ( B & 7 T, but then disappears as B is
further increased. At higher field a series of regularly
spaced peaks is observed in I(V) identified by arrows in

Fig. 2. In addition we observe a number of weaker peaks
in our data, including a sharp rise in current at the onset
for resonant tunneling (V = 1.31 V).

In our device the lower contact has a larger conducting
width than either the quantum well or the top contact (see
Fig. 1). For the polarity shown in Fig. 2, electrons flow
to the top contact so that he@, & hen

For this device at low temperature almost all the
electrons in the emitter occupy the lowest (i = 0) state.
This is a key difference as compared with our previous
work on a larger device in which many subbands were
occupied in the emitter and the resulting I(V) was
a convolution of resonances from all occupied states
[3]. We show below that it is possible to extract the
probability density of the laterally confined states in the
quantum well if only one emitter state is occupied.

Resonant tunneling via the jth state occurs when the
voltage is adjusted so that the lowest state in the emitter
is aligned in energy with the jth state in the well,
i.e., eV' + Fo + Iten, /2 = Ft + (j + I/2)/ttu . The
current flowing through state j, II(B), is proportional to
the modulus squared of the matrix element between the
initial and final states, MI(B), given by (Mori et al. [6],
Demmerle et al. [7], and Wang et al. [3])
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FIG. 2. I(V) characteristics of a submicron resonant tunneling
diode in the presence of a magnetic field parallel to z. Lowest
curve is for B = 0 T; top curve is for B = 10 T in 1 T steps.
Inset shows I(V) (B = 0 T) for a large area diode fabricated
from the same semiconductor heterostructure. Additional peaks
in I(V) are observed in the submicron diode, as compared with
the large area device.

where Po(ky) = f p(y) exp(ikyy) dy and 4J (ky) are
the Fourier transforms of the emitter and well wave
functions. The magnetic field dependence enters through
the parameter ko = eBhs//t, where As is the separation
of the emitter and well states in the x direction (we
estimate As = 20 nm). Equation (1) is derived from a
quantum mechanical treatment. However, the quantity
ko may be related to the classical change in kinetic
momentum of an electron moving in a magnetic field.
Classically such an electron executes a curved orbit, and
in moving a distance As in the x direction changes its
kinetic momentum in the y direction by eBhs(= Iiko). In
a quantum mechanical formulation for a large area diode,
the effect of the magnetic field is to introduce a wave-
vector shift equal to ko [8—10] in the initial and final states
(which are plane waves). For a small area diode, ko enters
as a wave-vector shift between the Fourier transforms of
the initial and final confined state wave functions.
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FIG. 3. (a) Variation of peak currents with magnetic field
for the j = 0, 1, and 2 (circles, triangles, and squares, respec-
tively) peaks. The experimental data are displaced for clarity.
(b) (4, (k~)(2 the probability densities for the j = 0, 1, and 2
simple harmonic oscillator states. k„= [= (men /h)' 2] is the
natural wave vector for a SHO state. The maximum for the j =
1 state occurs at k~/k = 1 and experimentally at B = 3.1 T
corresponding to a value of ko = eBAs/h = 9.1 X 107 m
Equating this value with k gives hen = 10 meV.

We can account for the principal peaks in our data as
follows —the peaks labeled 0 and 2 arise from resonant
tunneling from the i = 0 (symmetric) state in the emitter
into state j (= 0 and 2) in the well. Tunneling via the
antisymmetric state j = 1 is strongly forbidden by parity
conservation at 8 = 0, since the matrix element defined
in Eq. (1) is zero for this case. However, this restriction
is relaxed for B ) 0, and the peak labeled 1 in Fig. 2 is
due to tunneling via the j = 1 level.

From Eq. (1) we see that the application of a
magnetic field provides a means of measuring the
probability density of the confined states formed in the
quantum well with a resolution in k space given by
the width of the Fourier transform of the emitter wave
function. In the limit h~ && hen„when the emitter
states have a narrow spread (i.e. , a small half-width) in

k~, the peak current through the jth state I~ —~@~.(ko) ~
.

Figure 3 shows the j = 0, 1, and 2 peak currents plot-
ted versus magnetic field together with the theoretical
probability densities of simple harmonic oscillator (SHO)
states. There is excellent agreement between our data and
the theoretical plots if the value of k [= (mes /h)'/,
the natural wave vector scale for SHO states] is cho-
sen so that the theoretical and experimental maxima
for the j = 1 state coincide. This choice corresponds
to 6~ = 10 meV, and a characteristic length scale
for the wave function, k ' = 10 nm. The width of
the initial state [tIiPk~) = (7rk, ) '/ exp( —kY/2k, ),
where k, = (mrs, /It)'/ ] limits the resolution of the
minimum of the j = 2 state. In addition, the j = 0
state is broadened from Ij(B) ~ exp( —ko /k ) (the
result expected for an infinitely narrow initial state)

to I~ (B) ~ exp( —ko /(k + k, ). From a compari-
son of our data with theoretical curves, we esti-
mate that Rcu, = 5 meV. Note that Rcu, = Iten /2
is consistent with our previous measurements on
larger devices in which several subbands are oc-
cupied in the emitter [3]. The voltage sepa-
ration of the j = 0 and j = 2 is approximately 140 mV.
These states are separated by 20 meV in energy which
gives a leverage ratio, k = 7. This falls within the range
of values (k = 6—8.5) which we have previously reported
for these devices [3].

The series of peaks in I(V) observed at higher voltage
and high magnetic field (see Fig. 2) is due to resonant
tunneling via states with higher index (j ) 2). For
these states we are able to resolve only the largest
peak in ~tIiI(kY)~z which occurs near the classical turning
point, k~,„=[2m(j + 1/2) It ru ]'/z/It Note .also from
Eq. (2) that for all states Ij(B) ~ 0 in the limit ko )
k~ „,in agreement with our data.

So far we have discussed only the effects of tunneling
from the i = 0 state. From measurements on the same
device taken for B oriented parallel to y, we have
established that there is a marginal occupation of the
i = 1 state in the emitter, i.e., the Fermi energy in the
emitter, FF, —3Itru, /2. Tunneling from this state gives
rise to a number of weak peaks in I(V); for example, the
peak which occurs at V = 1.4 V for B = 0 T in Fig. 2
corresponds to tunneling from i = 1 via j = 1. Although
this is interesting, the i = 1 wave function has a more
complex form than for i = 0, and therefore we are unable
to extract the final state wave function from the magnetic
field dependence of these peaks.

Finally we remark that our explanation assumes that
electrons are independent. It is possible that some of the
other weaker peaks in our data are due to electron-electron
interactions. In particular, the sharp peak that is observed
at the onset for conduction is highly reminiscent of a Fermi
edge singularity which we have recently reported [11].

We have shown that it is possible to measure the
probability density of quantum-confined states formed
in semiconductor nanostructures using resonant magne-
totunneling. The application of a magnetic field induces
a relative shift in momentum space between the initial
and final states between which electrons tunnel. For the
case considered here, the confining potential is close to
parabolic; however, it is clear from the above analysis
that the technique can in principle be applied to elec-
trons confined in potential wells of arbitrary shape.
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