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Alex J. Dragt*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

(Received 23 June 1995)

New methods are presented for the integration of autonomous flows, with an emphasis on the
Hamiltonian case. The Hamiltonian results are expected to have important applications for charged-
particle optics (including accelerator design) and for graded-index light optics.
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A common feature in the treatment of many autonomous
dynamical systems problems is the need to evaluate in
some fashion maps W of the form 38 = exp(tL). Here
t is a parameter, which may be taken to be the time, and
L denotes some linear operator that is typically composed
of elements of some Lie algebra. The map W describes
the relation between an initial state at time zero and the
resulting final state at time t that arises from following the
autonomous How generated by L. For example, L may be
a matrix in the case of coupled first-order ordinary linear
differential equations, the operator i A /—h in the case of
quantum mechanical systems, the Hamiltonian Lie opera-
tor —:H:in the case of classical Hamiltonian systems, and
a general Lie operator in the case of general coupled first-
order ordinary nonlinear differential equations. There are
analogous operators and maps associated with parabolic
partial differential equations.

The purpose of this Letter is to describe a new method
for the computation of exp(tL) in the context of classical
Hamiltonian systems. This method has immediate appli-
cation to problems in charged-particle optics (including
accelerator physics) and geometrical light optics (includ-
ing graded-index media). It is expected that it may have
applications in other fields as well.

Where feasible, one might attempt to evaluate exp(tL)
directly by using the series

[exp(tL/2')] = [ . [[exp(tL/2')] ] . .] (n squarings) .

(3)

When n is sufficiently large, the argument tL/2" is in
some sense small. Suppose that there is some method of
computing exp(tL/2") to sufficient accuracy when tL/2"
is sufficiently small. Suppose also that there is an efficient
procedure for successive squarings as needed in (3). Then
we may compute exp(tL) using the scaling and squaring
formula

exp(tL) = [ . [[exp(tL/2")] ] . ] (n squarings) .

(4)

Sometimes L can be written as a sum of two terms,
L = A + B, in such a way that both exp(rA) and
exp(rB) can be evaluated exactly or have some other
desired property. In that case use of splitting formulas
may be advantageous. The simplest nontrivial splitting
formula, accurate through terms of order r, is

exp(rL) = exp[r(A + B)]
= exp(rA/2) exp(rB) exp(rA/2)[1 + O(r )].

exp(tL) = g (tL)'"/m! .
m=0

A fourth-order splitting formula, accurate through terms
of order 7. , is

However, even in the matrix case, use of the series (1) is
known to be the most dubious way of computing the ex-
ponential function [1]. Although the series is convergent
for all t and L in the matrix case, the convergence is often
slow thereby requiring the computation of a large number
of terms, depending on the magnitude of t and the spec-
trum of L, and round-off errors can also be severe. Thus,
even in the simplest case, a better method is needed.

Let n be a positive integer. The exponential function
satisfies the scaling identity

X exp(W4rB) exp(wqrA) exp(w6rB)

X exp(w7rA) [1 + O(r')], (6)

where the weights w; have the values

wi w7 = 1/[2(2 —2' )], w2 = w6 = 2w~,

w3 = w5 = (1 —2' )wi, w4 = —2' w2. (7)

exp[7(A + B)] = exp(wirA) exp(w2rB) exp(W3rA)

exp(tL) = [exp(tL/2"))

Also, the right-hand side of (2) can be calculated by n
successive squarings,

Still higher-order formulas are known [2,3].
Suppose an mth-order splitting formula is used to

evaluate exp(7L) = exp[r(A + B)] with r = t/2", and
this result is then employed in (4). Doing so we obtain
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a result for exp(tL) that is correct up to an error of order
2"(At/2") +Il, where A is some number that depends on
the spectrum, or perhaps the norm, of I . We see that for
rather modest m and n the error can be quite small. We
call the use of (4) along with suitable splitting formulas,
of which (5) and (6) are examples, the method of scaling,
splitting, and squaring.

The method of scaling and squaring, along with split-
ting formulas such as (5) and (6) and their higher-order
generalizations, seems very promising for the treatment
of a broad range of problems, and deserves further ex-
ploration of its use for specific applications. However,
the more accurate fourth-order splitting formula (6) and
its still higher-order generalizations involve many factors
and the solution of complicated sets of algebraic equations
for the weights. For some important areas of Hamiltonian
mechanics, and for some purposes, we have found better
splitting formulas that have fewer factors and can be ob-
tained relatively easily to very high order.

To discuss Hamiltonian mechanics, it is convenient to
treat the collection of phase-space variables q, p on an
equal footing, and to denote them by the general symbol
z = (q, p). Let f(z) be any function of the phase-space
variables z. To every such function we associate a Lie
operator, which we denote by the symbols:f:. The Lie
operator:f: is a differential operator (vector field) defined
by the equation

:f:= P(Bf/Rq, )B/Bp, —(Bf/Rp, )B/Bq, .

If:f: acts on any other function g, we get from (8)
the result: f:g = [f, g], where [, ] denotes the familiar
Poisson bracket. A commonly used notation for:f:, but
considerably more awkward for long computations, is
ad( f)

In many cases the classical Hamiltonian H has or can
be arranged to have an expansion of the form

H = h2 + h3 + h4 + (9)

where the h~ denote homogeneous polynomials of degree
l in z. In this case it can be shown that exp(r: H:)—can
be written in the factored product form

exp(~: H:) =— exp(: g4 .) exp(: g3 .) exp(: g2 .)

(10)

where the gt are also homogeneous polynomials of degree
l in z [4,5]. The existence of a representation of this form
is key to the Lie algebraic treatment of charged-particle
and geometrical light optics [6—8]. The quantity l —1

is often referred to as the aberration order. What we
are essentially using here is the fact that the Lie algebra
of Hamiltonian vector fields can be graded according to
degree. Analogous factorizations can also be obtained
for the non-Hamiltonian case with the aid of a similar

grading.
The factored product (10) may be viewed as a kind of

generalized splitting formula which, although it makes no
assumption about splitting L (or equivalently :H:) save-
for the general decomposition (9), does write the result
as a product of factors having desirable properties. As
such, it has three advantages: First, its form is fixed,
and potentially exact. Second, it can be concatenated
easily with other maps of the same form by use of the
Baker-Campbell-Hausdorff formula [4,9]. Consequently,
it can be squared repeatedly with relative ease. Third,
the exact g~ are entire functions of ~, and have rapidly
convergent Taylor expansions. As will be described in
detail elsewhere, we find through fifth order in 7., for

!

example, the formulas

g2 = —7.hp,

g3 =

g4 =

g4

fu
g4

5

g (1/m!) (—r)"' h3 ™Il h3,
m —1

d fu
g4 + g4

5

g(I/m!)( —r)-:h, :™I' h. ,
m 1

—(I/12)r [h3, . h2. h3] + (1/24)i [h3 . h2. h3]

—r t(I/80) [h3, . h2 .. h3] + (1/120) [:hp .. h3, . h2. hp]).

Similar formulas can be found for the g~ with larger
l. Also, results of still higher order in 7. can easily
be obtained. Note that g4 consists of a direct term g4
driven by h4 and a feed up term g4" driven by lower

degree terms, in this case h3. This is a general pattern for
the gi with t ) 3. By contrast, there are no feed down
terms. To find a given g~, it is only necessary to know
the h~ with l' ~ l. We also observe that the formulas
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(11) are all expressible in terms of Poisson brackets. All
expressions involve only operations within the Poisson
bracket Lie algebra generated by the h&. Such results are
to be expected in general as a consequence of the Baker-
Campbell-Hausdorff theorem. Analogous formulas, but
involving instead commutators of vector fields, are to be
expected in the non-Hamiltonian case. The coefficients
in (11) should be universal. Finally, we note that the rate
of convergence of the series (11) depends only on the
properties of ~: h2. (and hence rh2), because that is the
only term that appears infinitely often in the series.

Suppose S'il. is written in the factored product form

3M = exp( —t:H:)
exp(. f4 .) exp( f3 ) exp(. f2 ) (12)

and that we attempt to calculate W using the splitting for-
mula expansions (11) through fifth order in r and evalu-
ated for 7. = t/2", and using the scaling and squaring
formula (4). What errors are involved in such an ap-
proach? To study this question we may, for example,
attempt to estimate the error in f3 based on the first ne-
glected term in gs, which is (1/6!) (—~):h2. h3. By
this estimate we expect the error in fs to be on the order
of 2"(I/O!) (—t/2'): h2. h3. Let us write hz in the form

1

h2 2 ~ab~a~b ~

A/2" = 10 (14)

Then we find that the expected relative error in f3 is on
the order of 10 ' . By generalization, we may hope that
the computation of all terms in 94 in this case should be
good to approximately ten significant figures.

We have found that this is indeed the case. We have
computed W for several different Hamiltonians chosen
at random (with a random number generator) using (4)
and (11) with n selected to satisfy (14), and compared
the results with those obtained by careful numerical
integration of the exact differential equations for the

f& [5]. In every case we found agreement, through at
least ten significant figures, between the scaling, splitting,
and squaring results and the exact results. Of course,
the value of n required to satisfy (14) varies from
Hamiltonian to Hamiltonian. However, we note that the

where S is a symmetric matrix. Also, let J be the
fundamental symplectic 2-form given by J,b

= [z„zt,].
Then it can be shown that the operator (t: hq

..)s, when
acting on h3, is bounded by (3A) . Here A is the value
of some convenient norm, for example, the maximum
column sum norm, of the matrix tJS [10]. Note that we
expect f3 itself to be on the order of ths Consequent. ly,
we expect the relative error in f3 to be on the order
of (1/6!) (3A/2") . Suppose, for example, given tH and
consequently also th2, we select n so that

n required to achieve some specified accuracy grows
only logarithmically with the norm of tJS (which can
be and is calculated in advance), and that for any given
H the accuracy increases very rapidly with increasing
n. Correspondingly, because the number of required
operations is relatively small and no cancellations are
required to occur between large terms, we found no
problems with round-off error. Finally, with regard
to computational speed, we found that the method of
scaling, splitting, and squaring is far faster than numerical
integration. It is also faster and, as expected, far more
reliable than direct use of the series (1).

In summary, we have found a new method for evaluat-
ing exp( —t:H:) in the factored product form (12) when
H is of the form (9). This method is applicable to arbi-
trarily large aberration order, has high, controllable, and
predictable accuracy with negligible round-off problems,
and is very fast. Since Hamiltonians of the form (9) are
standard fare in both charged-particle optics and graded-
index light optics, we expect this method to become the
method of choice for these problems, and that its use will

greatly facilitate the treatment of important problems in
both accelerator design and optical design. For example,
its high speed and high accuracy will make possible the
calculation of accurate one-turn maps for large storage
rings in a reasonable amount of time. Finally, the general
method of scaling, splitting, and squaring shows promise
for the treatment of a broad range of problems beyond
those described here, and merits further study.
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