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Universal Scaling Functions in Critical Phenomena
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A histogram Monte Carlo method is used to evaluate the existence probability E„and the percolation
probability P of bond and site percolation on finite square, plane triangular, and honeycomb lattices.
We find that, by choosing a very small number of nonuniversal metric factors, all scaled data of E„
and P may fall on the same universal scaling functions. We also find that free and periodic boundary
conditions share the same nonuniversal metric factors. This study may be extended to many critical
systems.
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Scientific researches can be considered as processes of
data reduction, in the sense that one looks for new ideas and
principles such that a variety of data can be represented by
one or a few equations, or functions, with a small number
of parameters. For example, in the theory of critical
phenomena, the idea of universality leads to a set of fixed
critical exponents in many different systems [1,2]. The
idea of the universal finite-size-scaling functions proposed
by Privman and Fisher [3] represents another important and
interesting example. In this paper we will present results
which support, and generalize, the idea of Privman and
Fisher on universal scaling functions.

Finite-size scaling is important in both theoretical [4—
6] and experimental [7] studies of critical phenomena.
According to the theory of finite-size scaling [4—6], if the
dependence of a physical quantity Q of a thermodynamic
system on a parameter t, which vanishes at the critical
point t = 0, is of the form Q(t) —t' near the critical
point, then for a finite system of linear dimension I., the
corresponding quantity Q(L, t) is of the form

Q(L, t) —L ' 'F(tL '),

f, (t, L) —L Y(DtL '), (2)

where y, (=v ') is the thermal scaling power and F(x)
(x = tLY') is the scaling function. It follows from (1)
that the scaled data Q(L, t)L'y' for different values of L
and t are described by a single function F(x). Thus it is
important to know general features of the scaling function
under various conditions.

In 1984, in a paper on finite-size scaling, Privman
and Fisher [3] proposed the concept of universal scaling
functions and nonuniversal metric factors. Specifically,
they proposed that, near t = 0, the singular part of a free
energy can be written as

where d is the spatial dimensionality of the lattice, Y is a
universal scaling function, and D is a nonuniversal metric
factor [3,8]. Following this idea, Lee [8] has recently
evaluated the scaling function and the nonuniversal metric
factor for the three-state Potts model on the square lattice.
According to the idea of universality [1,2], different
systems in the same spatial dimensionality and having the
same Hamiltonian symmetry share the same set of critical
exponents. However, it seems that there have been no
published results which show that many different systems
in the same universality class [1,2] share the same set of
universal scaling functions [3].

In this Letter, we use a histogram Monte Carlo simu-
lation method (HMCSM) [9—14] to evaluate the exis-
tence probability E„(G,p) and the percolation probability
P(G, p) of bond and site percolation on the square (sq),
the planar triangular (pt), and the honeycomb (hc) lattices.
Here E„(G,p) is the probability that the system percolates.
In the limit of L ~ ~, E„(G,p) approaches the step func-
tion 0(p —p, ) [6], where p, is the critical probability.
P(G, p) is the fraction of lattice sites in the largest cluster
in G, which is percolating; it is the order parameter of the
system. E„(G,p) and P(G, p) may be used in a perco-
lation renormalization group method to calculate the criti-
cal point, critical exponents, and the thermodynamic order
parameter for the percolation problem [13]. More precise
definitions of E„(G,p) and P(G, p) used in this Letter will
be given below. It should be noted that E„(G,p) cannot
be derived from the free energy of the system. Therefore,
we study a problem which extends the scope considered
by Privman and Fisher [3]. We find that by choosing an
appropriate aspect ratio, i.e., width-to-high ratio, for each
lattice and a very small number of nonuniversal metric fac-
tors for each model, the scaled data of E„and P of all
models with the same boundary conditions fall on the same
curves. We also find that free and periodic boundary con-
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ditions share the same nonuniversal metric factors. Thus,
our results support, and generalize, Privman and Fisher's
idea of universal scaling functions.

Here we briefly review the HMCSM for the site perco-
lation [11—13] and define related quantities. The exten-
sion to the bond percolation [9,14] is straightforward. Our
HMCSM is different from the one used by Gould and To-
bochnik [15],in which only E„(G,p) is calculated. In the
site percolation on a d-dimensional lattice G of N sites,
each site of G is occupied with a probability p, where
0 ~ p ~ 1. A cluster which extends from a given side
of G to the opposite side is a percolating cluster. The sub-

graph whose largest cluster is percolating is a percolating
subgraph and denoted by G', otherwise the subgraph is a
nonpercolating subgraph. Then we have the definitions

is equal to that for the square lattice, i.e., 0.5. There-
fore, we choose a 433 X 500 pt lattice whose aspect ratio
433/500 is very close to ~3/2, and a 433 X 250 hc lat-
tice whose aspect ratio 433/250 is very close to ~3. For
the pt and hc lattices, L is given by ~N Fo. r the square
lattice, the linear dimension I. is chosen to be 512. The
calculated results of E„and P are shown in Figs. 1(a)
and 1(b) by solid and dotted lines for site and bond per-
colation, respectively. Hu [11] has found that different
boundary conditions give quite different scaling functions
near the critical region. However, they give the consistent
critical point, critical exponents, and the thermodynamic
order parameter from renormalization group calculations
[11]. Therefore, we also use the HMCSM to calculate
the E„(G,p) and P(G, p) for site and bond percolations

E, (G, p) = P p' '(1 —p)" ' "',
G' CG

(3)

P(G, p) = y p' "'(I —p) ' "'N"(G„')/N
~ (4)

G,' CG

where v(G') is the number of occupied sites in G'. The
P

summations in (3) and (4) are over all subgraphs G„of
G, and N*(G„') is the total number of sites in the largest
cluster of G' [ll —14]. We choose w different values

P
of p. For a given p = p~, 1 ~ j ~ w, we generate NR
different subgraphs G'. The data obtained from the wNR
different G' are then used to construct three arrays of
numbers of length N with elements N~(v), Nf(v), and

N„„(v), 0 ~ v ~ N, which are, respectively, the total
numbers of percolating subgraphs with v occupied sites,
nonpercolating subgraphs with v occupied sites, and the
sum of N*(G') over subgraphs with v occupied sites. In

P
the large number of simulations, the existence probability
F~ and the percolation probability P at any value of
the site occupation probability p can then be calculated
approximately from the following equations [9,11]:

N„(v)
Ep(G, p)= gp (1 —p) C N()+N( ),

(5)

N„„(v)
N ~ P ( P) N (v) + N (v)

'
v=o V f V

(6)
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where C = N!/(N —v)! v!.
We first use (5) and (6) and similar equations for

bond percolations to evaluate the existence probability
E„(G,p) and the percolation probability P(G, p) for site
and bond percolation on the pt, sq, and hc lattices with
free boundary conditions. In such boundary conditions
and in the limit L ~ (x), it has been found that for site
and bond percolation on the sq lattice E„(G,p, ) = 0.5
[16,17], and it has been proposed [18] that for bond and
site percolation on the pt lattice with aspect ratio ~3/2
and on the hc lattice with aspect ratio ~3, E„(G,p, )

0.1

0.0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 1. Results for site percolation (SP) and bond percolation
(BP) on the plane triangular (pt), square (sq), and honeycomb
(hc) lattices. The solid (dotted) lines from left to right are for
site (bond) percolations on pt, sq, and hc lattices with free
boundary conditions (FBC). The dashed (dot-dashed) Iines
from left to right are for site (bond) percolations on pt, sq, and
hc lattices with periodic boundary conditions (PBC). (a) F~ as
a function of p. (b) P as a function of p.
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on a 512 X 512 sq lattice, a 433 X 500 pt lattice, and
a 433 X 250 hc lattice, and such lattices have periodic
boundary conditions. The calculated results are shown in
Figs. 1(a) and 1(b) by dashed and dot-dashed lines for site
and bond percolation, respectively.

For bond and site percolation on planar lattices, it
is generally believed that the exact y, and the order
parameter exponent P are 3/4 and 5/36, respectively [6].
It is also believed that the exact critical point p, for
the bond percolation on the sq, pt, and hc lattices are,
respectively, 0.5, 0.347 296. . . , and 0.652703. . . [6], and
the exact p, for the site percolation on the pt lattice is 2
[6]. Ziff and Langlands et a/. have carried out extensive
Monte Carlo simulations to obtain p, = 0.5927460 ~
0.0000005 [17]and p, = 0.697034 ~ 0.000006 [18]for
the site percolation on the sq and hc lattices, respectively.
Using the aforementioned exact values of y, , P, and p,.
[6], and numerical values of p, [17,18], we first obtain
E„(G,p) and P(G, p)/L»' as a function of z = (p-
p, )L~'. We then use application programs XVGR in Sun
workstations to fit such data as polynomials of z. The
coefficients of the linear terms for E~(G, p) are used to
calculate D~, and the coefficients of the constant and linear
terms for P(G, p)/L Pi'' are used to calculate D3 and

D2, respectively. The calculated values of D&, D2, and
D3 are shown in Table I, where the notations for periodic
boundary conditions are represented by D&, D2, and D3
[19]. We have plotted the data for E„(G,p) of Fig. 1(a)
as a function of x = D i (p —p, )LY' in Fig. 2(a), and
D3P(G, p)/L i Y' for P(G, p) of Fig. 1(b) as a function
of x = D2(p —p, )Li" in Fig. 2(b). Since the critical
exponent of E„ is zero [6], there is no need to divide E~ by
the factor L 'Y' to obtain the scaling function for F~, now
denoted by F(x). It is obvious that F(0) = E„(G,p, ).
The scaling function for P(G, p) is denoted by S(x).

Figures 2(a) and 2(b) show that E„and P possess
well-defined universal scaling functions It is of int. erest
to note that for each lattice D~ is consistent with D2

within numerical uncertainty and the values of D~, D2,
and D3 for the free boundary condition of a lattice are
consistent with those for the periodic boundary condition
of the same lattice within numerical errors. In other
words, only a small number of nonuniversal metric factors
are needed to reach the universal scaling functions shown
in Figs. 2(a) and 2(b). For the free boundary condition, we
find that F(x) = 0.49(9) + 0.9(7)x —1(0)x3 + 1(0)xs +

, S(x) = 0.39(2) + 1.0(3)x + 0.5(5)x —0.7(3)x3—
0.5(5)x + . . For the periodic boundary condition,
we find that F(x) = 0.93(4) + 0.3(9)x —0.9(l)x +
0(7)xs + 0(7)x4 —1(5)xs +, S(x) = 0.94(7) +
0.9(9)x —0.8(5)xz —0.2(5)x3 + 1(3)x4 +

We have also studied site and bond percolations on
a 256 X 512 rectangular lattice, a 216 X 250 hc lattice,
and a 216 X 500 pt lattice; the aspect ratios of such
lattices are about half of the lattices mentioned above.
We have found that D~, D2, and D3 for each of these new
lattices are consistent with those listed in Table I of the
corresponding lattice [20]. If the other factor is used to
reduce the aspect ratios, similar results could be expected.

At present, the conformal theory is only applied to
the bond percolation on rectangular lattices with free
boundary conditions and only at the critical point p,. [16].
It is of interest to extend such studies to other lattices and
for p away from p, in order to calculate exact D ~

and
then compare such values with our numerical values.

We expect that the features of universal scaling func-
tions and nonuniversal metric factors found in this Letter
may be applied to a variety of critical systems, e.g. , clas-
sical and quantum spin models, lattice gauge models, spin
glass, etc. , where finite-size scalings may be applied [5].
In particular, it has been found that phase transitions of
many Ising-type spin models and hard-core particle mod-
els are percolation transitions of the corresponding cor-
related percolation models [21—23]. We may extend the
method of this Letter to calculate universal scaling func-
tions for E„(G,p) and P(G, p) of such models [24]. With

TABLE I. Nonuniversal metric factors for site and bond percolation on square (sq), plane triangular (pt), and honeycomb (hc)
lattices. The values of w and N& used in the simulations are also shown. w, Nz, D], D2, and D3 are for lattices with free boundary
conditions; w', N&, D], Dz, and D3 are for lattices with periodic boundary conditions.

Model

Lattice

N
D]
D2
D3

NR

D]

D3

Site

sq

420
56 000

0.786 ~ 0.015
0.794 ~ 0.017
1.485 ~ 0.016

420
90 000

0.785 ~ 0.010
0.792 ~ 0.012
1.476 ~ 0.006

Site

pt

290
45 000

0.793 ~ 0.025
0.792 ~ 0.018
1.706 ~ 0.017

290
30000

0.789 ~ 0.011
0.792 ~ 0.012
1.712 ~ 0.007

Site

310
40 000

0.858 ~ 0.020
0.870 ~ 0.020
1.292 ~ 0.015

310
30 000

0.870 ~ 0.012
0.879 ~ 0.015
1.289 ~ 0.004

Bond

318
50 000

1

1

1

318
35 000

1

1

Bond

pt

318
20 000

1.227 ~ 0.044
1.240 ~ 0.043
1.021 ~ 0.021

318
20 000

1.239 ~ 0.021
1.247 ~ 0.027
1.016 ~ 0.007

Bond

318
30 000

0.944 ~ 0.016
0.954 ~ 0.018
0.987 ~ 0.011

290
15 000

0.974 ~ 0.013
0.979 ~ 0.016
0.987 ~ 0.005
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of High-speed Computing in Taiwan, and the Department
of Physics of Harvard University for providing the com-
puting and research facilities.

0.5
U

0.4

0.3

0.2

0.1

0.0
-2.0 -1.0 0.0

X

1.0 2.0

1.5
(b)

1.0

0.5

0 0
-2.0 -1.0 0.0

X

1.0 2.0

the rapid progress of computing and experimental facili-
ties, more and more results of critical systems may be ob-
tained and analyzed by finite-size scalings. The results of
this Letter will greatly reduce the amount of jobs needed
to obtain experimental or numerical data.
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FIG. 2. (a) The calculated E„ for the site and bond perco-
lation on pt, sq, and hc lattices as a function of x, where
x = D~(p —p, )L '. The scaling function is F(x) The.
lower (upper) curves are for free (periodic) boundary condi-
tions. (b) The calculated D3P/L»' for the site and bond
percolations on pt, sq, and hc lattices as a function of x,
where x = D2(p —p, )L~'. The scaling function is S(x).
The lower (upper) curves are for free (periodic) boundary
conditions.
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