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Universal Properties of Multimode Laser Power Spectra
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In a multimode laser operating near steady state, we determine analytically relations which connect
the power spectrum density of each modal intensity and of the total intensity at the same frequency.
We prove that, if the laser is in an antiphase regime, these relations become independent of the initial

condition.

This property rests on the existence of widely different time scales for the oscillation

frequencies and their damping. Numerical simulations indicate that these relations remain true when a
small amplitude modulation is applied to the control parameter.

PACS numbers: 42.50.Ne, 42.55.Rz

Recently, multimode lasers have been intensively stud-
ied as examples of spontaneous self-organized time-
periodic systems. This regime has been called antiphase
dynamics (AD) in laser physics. It is a manifestation of
the coherence property of nonsteady modal intensities that
can be displayed by multimode lasers. It should not be
confused with the electric field coherence of the single
mode laser. AD has been reported in lasers in the case
of spontaneous self-pulsing [1-3], in the presence of an
external modulation [4,5], in the noise spectrum at steady
state [6], in the transient relaxation to steady state [7,8], in
the chaotic regime [9,10], and in the routes to chaos [11].

A laser oscillating on N modes is characterized by N
modal intensities 1,(¢), n = 1,2,...,N. The rate equa-
tion limit, where only model intensities and population in-
version are coupled, applies to all the lasers in which AD
has been reported up to now. For such lasers, the sum of
the modal intensities 31(z) = > _, I,(¢) is the total in-
tensity. In the case of self-pulsing, AD means that each
modal intensity is periodic, though with different phases
and/or frequencies, but the total intensity is also periodic.
When the dynamics is characterized by the relaxation fre-
quencies, AD means that each modal intensity is driven
by a number of frequencies (smaller than or equal to the
mode number) while the total intensity is driven by only
one frequency, the one which is related to the single mode
frequency. The purpose of this Letter is to put forward yet
another signature of AD by deriving universal relations be-
tween the power spectra of I,,(z) and 21(z). Universality in
this context means that the relations are independent of the
initial condition, i.e., of the preparation of the system. We
shall first show that, under rather weakly constraining con-
ditions a general relation can be found between the power
spectrum of the total intensity, the modal intensities, and
the intensity phases. We shall then use the known phase
properties of the AD regime in two specific examples to re-
duce these relations to closed relations between the power
spectra of the modal and the total intensities.

Let us consider a dynamical system described by the
evolution equation

dx

ar = f(x,€), (1)
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where x = (1,z) = (I, l>,...,In,21,22,...,21), N +
L = M are the variables of the system, and ¢ is the
control parameter. The partition in I and z is arbitrary.
The T variables are those whose power spectrum will be
analyzed; the z variables are the remaining dynamical
variables necessary to describe the system. For instance,
in the examples we shall discuss below the I variables
are the modal intensities and the z variables are the
moments of the population inversion. We assume that
there is a steady state Xy which satisfies f(xg, &) = 0.
We define a deviation U = x — Xy = (U1, Us, ..., Uy).
Assuming that the nonlinearity in Eq. (1) is algebraic (in
the physical examples, it will be quadratic), the linear
stability of the steady state x will yield a set of S = M
eigenvalues and M eigenvectors. If we seek linearized
solutions of the form U = V exp(Ar), we obtain eigenval-
ues of the form Ay, = 27mi (&) — k(&) with k(&) > 0
in the domain where X is stable. The solution of the
linearized equation for U can, therefore, be written as

S
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with real A, and 6,,. The usual definition of the total
power in the time interval (0, T) of a component f of x is

T oo
P(f.1) = ]o lFOP dr = j IF@)P a0

U,(t,&) = Re

]

= [ _rroa0. )

This relation defines the power spectral density P(f, Q)
which is the central function we wish to study in terms
of the Fourier transform F(Q) of f(z). The two models
for which AD has been found are characterized by
the property that the eigenvalues A; depend on a large
parameter o >> 1 with the scaling

Im()ls) =27}, = O(Ml/z)’
Re(Ay) = —x; = O(1),

In this limit, and for 7 = O(1), we can approxi-
mate in the evaluation of the power spectral density
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(PSD) the time integral over exp(—2x;t) [cos(4mQ t +
0,5 + 8j5) + cos(8,s — 8j5)] by the time integral over
exp(—2kst)cos(0,s — Bj5). As a result, we obtain the
following relation between the PSD of the modal variable
I, and the PSD of the sum over all /, at the same
frequency:

N
P(21,Q,) = D> P(1,, Q)
n=1

N r—1

+ ZZ Z\/P(Ir’ﬂs)P(IjaQS)
r=1j=1
X cos(0,s — 0. &)

The relation (5) still involves the initial condition via
the phase difference in the cosine function. However,
a signature of AD is precisely the occurrence of simple
relations between the phases of the modal intensities.
Therefore, we shall consider two models which are known
to display AD and determine to what extent the relation
(5) is simplified by these phase relations.

(i) The Tang, Statz, and deMars rate equations [12].—

dzo J z
n
- = - - n - — I 5
’r w — 2o n§=1 Y (Zo ) ) n
dz N
L= yuzoln — 2o\ 1+ D ik |,
dt k=1

dl, Zn
= - — = 1], =1,2,...,N.
dr k[”’(“ 2) } "
7

These equations describe the N-mode Fabry-Pérot laser
with homogeneous broadening and include the influence
of the population inversion grating z,. The modal inten-
sities are I, and the space average of the population inver-
sion is zo. The pump parameter w is normalized so that
the lasting threshold is w = 1 for the very first mode.
The dimensionless decay rate k is large for solid-state
lasers [typical values range from 10 for neodymium-
doped yttrium aluminum garnet (Nd:YAG) lasers to 10°
for lithium neodymium tetraphospate (LNP) lasers]. The
modes differ by the relative gain y, = 1 with y; = 1.
The eigenvalues A, and the eigenvectors U, of the linear
stability analysis have been calculated explicitly in [13].
We have shown that the scaling (4) applies to the eigen-
values with 4 = k. If all the modes have the same gain,
v, = 1, there is one low frequency ), which is associ-
ated with N — 1 eigenvectors and a frequency (p > QO
which is nondegenerate. The total intensity satisfies the
equation of a harmonic oscillator with frequency 1g. Us-
ing this result, it is easy to obtain the following relations
between the PSD of the modal and total intensities, /,, and
3.1, respectively:

P(I,,Qr) = P(I,Qg),  P(21,Qg) = N*P(I,Qg),

P(2I1,Q1) = 0. (8)
The last relation is a signature of AD since it implies
that the total intensity oscillates only at Qg which is the

(6)
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single mode frequency. Numerically, these relations are
easily verified by a direct integration of Egs. (6) and (7).
For k = 10* we have recovered the result (8) within the
numerical accuracy.

However, the relations (8) are of limited use due to
the restriction that all modes have the same gain. In
the case of arbitrary relative gains, there are N different
frequencies and the determination of the phases 6,
requires the explicit solution of an algebraic equation
of degree N. In the case of two modes this is easily
done by generalizing to arbitrary +y, but k > 1, the
calculation presented in Ref. [13]. This leads to phase
differences which are either O (inphased oscillations) or
7r (antiphased oscillations). As a result, we obtain for
N = 2 but arbitrary relative gain

2
>

P(S1, Q%) = (P Q) + \[P(12. Qp) )
P10 = (PULOL + P00 ).

©)

Here again we have a result which is independent of
the system preparation. To test these relations we have
integrated numerically Egs. (6) and (7) for N = 2, w =
2.25, and k = 10*. The initial condition is the steady
state with pump parameter w = 2.5. The power spectrum
is calculated on the transient relaxation to the new steady
state. Excellent agreement has been obtained between the
results of the numerical simulation and the relations (9).

Up to this point, we have derived relations between
PSD by introducing, step by step, the necessary simpli-
fying assumptions. Let us now do the converse and ask
what can be inferred from the fact that such relations are
satisfied for a given system. For instance, we consider
the two-mode relations (9). Their verification implies first
and foremost that the perturbation applied to the system
is weak enough to warrant a linear response. However,
linearity implies only P(I1, A;) = |A|?, P(I1, A;) = |B|?,
and P(Z1,A,) = |A + B|*>. The coefficients A and B are
real functions of w and i A;. If the damping (— ;) had the
same scaling as (), then A and B would be complex. Be-
cause of the scaling (4), i A, is real to dominant order in k,
and A and B are, therefore, also real (to the same dominant
order in k), which then leads to P(Z1, Q) = (|A| = |B|)?
and hence to (9). Thus the verification of (9) also implies
that the oscillations and the damping operate on very dif-
ferent time scales such as (4). This also indicates that the
corrections to (9) will be @ (u'/2).

An analysis of the reference model developed in
Ref. [13] indicates that only the PSD at the same fre-
quency may lead to universal relations. Relating PSD’s
at different frequencies always leads to relations which
involve the-initial condition.

(ii) Intracavity second harmonic generation [14].—We
shall consider only the case where all modes oscillate with
the same polarization. The evolution equations for the
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modal intensities /,, and the nonlinear gains G, are

N
— a + gel, — 2ge Zl,), (10)

r=I1

ndl,/dt = I,,(G,,

N
dG,/dt = y — G,,(l +0 - B, +pB ZI,), (1)
r=1
where « is the cavity loss parameter, y is the small
signal gain which is related to the pump rate, 8 is the
cross-saturation parameter, and g is a geometrical fac-
tor whose value depends on the phase delays of the
amplifying and doubling crystals and on the angle be-
tween the fast axes of these two crystals. We have
assumed that «, B, and y are mode independent, in
good agreement with the experimental results [1,14]. The
parameter n equals 7./7y, where 7. and 7, are the
cavity round trip time and fluorescence lifetime, respec-
tively. The experiments have been performed in the
parameter domain e < 1, n < 1 witha, B,v,g,8/n =
O(1). In Ref. [15], we have shown that the linear sta-
bility of the steady state I, = I, G, = G leads to only
two eigenvalues A1, = 27i{)1, — k2 which satisfy the
scaling relations (4) with u = 1/7. The two frequen-
cies are 27w Q) = /(1 — B)IG/m + O(1) and 277 Q), =
VI1 + (N — 1)BlIG/n + O(1). Here again the total
intensity satisfies the equation of a harmonic oscillator
with frequency ();. The eigenvectors of the linearized
problem have been determined analytically. With these
results, we can compute the phases 6,5 which appear in
(5). For instance, for two modes we recover the relations
(9) while for three modes we have
2
) . (12)

3
P(31,0Q,) = (Z P(I,, Q)

n=1
TABLE L

malized to P(21,, Q,).

PSD for intracavity second harmonic generation with three modes.
v = 0.05, ¢ = 10°° and n = 2e. Initial condition: I, = 1.81, [, = 1.805, I, =
G3; = 0.0100082. Relaxation frequencies: 3} = 9.6 and , = 22.5. The variable ¢,;; stands for 8,

The generalization of the relation at (), for an arbitrary
number of modes is obvious. For (), the situation is
more difficult. In the same way as we have shown
analytically that there are two different periodic solutions
which differ only by their basin of attraction [16], the
linear stability of the steady state also indicates that two
different sets of phase relations can occur for N = 3, each
leading to a different relation between P(21,();) and the
P(1,,Q ). The situation described in Table I corresponds
to 031 — 01 = 631 — 0 = 7 at ) and O3, = O, =
62, at ). It corresponds to the regime called AD2 in
Ref. [16] though with damping in this case. The other
possibility is 633 = 0, 61 = 27/3, and 0, = 47 /3 at
Q; and 03, = 0, = 6y at . This corresponds to the
regime labeled ADI in Ref. [16] apart from the damping
present in this problem.

We have made a double test of the relations (5). First,
we have considered the relaxation to the stable-steady
state when the initial condition is a small perturbation of
that steady state. The results are displayed in the first
row of data in Table I for three modes. For the initial
conditions given in Table I, the phase differences are 0 or
7r and the relation (5) becomes

3
P(SIL,Q) = Y P, Q) + 2P, Q)P(12, Q)

p=1

— 24/ P(13,))

< (VP2 Q) + P01 ).

(13)

The agreement between the numerical integration of (10)
and (11) and the relations (12) and (13) is striking. This
is essentially due to the smallness of € and 7 for which
we have chosen values that are given by the experimental

Parameters are g = 0.9, a = 0.01, B8 = 0.6,
1.79, G, = 0.010008 2, G, = 0.010008 2, and
— 6. The PSD are nor-

P(Z1,,€) P(21,,4)
) Q Q, D315 @325 Doty P, Q) P(1,,Q,) P15, Q) Numerical Calculated
0 Q, T T 0 0.281 0.046 0.549 <0.001 <0.001
Q, 0 0 0 0.112 0.111 0.111 1 1
0.001 5 Q 0 0 0 0.256 0.256 0.256 2.303 2.303
Q, T T 0 0.208 0.033 0410 <0.001 <0.001
Q, 0 0 0 0.111 0.111 0.111 1 1
0.001 QO Q, — — — 1.063 0.610 1.147 3.487 —
Q, 0 0 0 0.111 0.111 0.111 1 1
0.001 15 Q, T T 0 0.175 0.028 0.346 <0.001 <0.001
Q 0 0 0 0.789 0.791 0.799 7.136 7.136
Q, 0 0 0 0.111 0.111 0.111 1 1
0.001 Q, O, T T 0 <0.001 <0.001 <0.001 <0.001 <0.001
O, 0 0 0 0.111 0.111 0.111 1 1
0.001 30 O, T T 0 0.409 0.066 0.798 <0.001 <0.001
Q, 0 0 0 0.112 0.111 0.110 1 1
Q 0 0 0 0.674 0.673 0.672 6.055 6.055
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data. Using the eigenvectors of the linearized problem
one can show analytically that P(21,Q4)/P(I,,Q;) =
O(n), n =1,2,...,N. The second test we have per-
formed is to integrate Eqs. (10) and (11) starting with
the same initial condition but adding a weak modulation
of the gain y which becomes y[1 + & cos(27Qr)] with
6 < 1. The phases 6, have been determined by inspec-
tion of the solutions and we again observe an excellent
agreement between the PSD of the total intensity and the
PSD of the modal intensities as given by (12) and (13),
save for the case )} = (); where the relative phases could
not be determined. This is because the modulation acts
with the same phase on all the modes. At (), the modes
are in phase while at {); they are in antiphase. Because of
this, we cannot determine the relative phase of the driven
modes. Another way to state the same problem is that
even in the case of perfect AD there will be a residual
peak at P(X1,€)), which is due to the modulation and
not to the internal dynamics.
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