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We study nucleation of kink-antikink pairs under weak nonequilibrium conditions and in the strong

friction limit.

We introduce an effective critical nucleus of size so, which is small compared to the
inverse kink density but large compared to a kink size.

We evaluate independently the nucleation

rate and the kink lifetime from a multidimensional Kramers theory and by studying kink-antikink

annihilation processes.

We find a kink density which is independent of so and of the driving force

in this regime. The result is in accordance with the equilibrium kink density obtained from statistical

mechanics.
PACS numbers: 11.10.Lm, 11.10.Kk

The nucleation and dynamics of solitary structures in
spatially one-dimensional and multistable systems are of
great interest in theoretical [1-9], experimental [10], and
computational [11,12] physics. In such systems the funda-
mental kinetic processes are a nucleation of kink-antikink
pairs, their subsequent propagation, and their eventual an-
nihilation. It is the purpose of this Letter to discuss these
kinetic coefficients near equilibrium, where the external
driving force F' is very small. This regime is difficult to
analyze, since a naive extension of the well-established nu-
cleation theory for large F' yields a critical nucleus with a
size that diverges at equilibrium. At small temperatures,
the density of kinks and antikinks is finite and sets an up-
per length scale over which nucleation and annihilation
processes have to occur. In the framework of equilibrium
statistical mechanics, moreover, kinks and antikinks are re-
garded as free particles. For reasons of consistency, it is
thus necessary to develop a picture of the nucleation and
annihilation processes which permits essentially free dif-
fusive motion during the lifetime of a kink.

A theory of kink dynamics in multistable systems was
outlined already in the mid-fifties in connection with dis-
location theory by Seeger [1] and Lothe and Hirth [2].
Much work has been focused on the overdamped sine-
Gordon chain subject to a driving force and to thermal
noise. A quantitative theory which permitted the evalu-
ation of the average speed and the discussion of fluctu-
ations away from this average behavior was developed
by Biittiker and Landauer [6], where the nucleation rate
and the annihilation rate were evaluated for driving forces
so large that a kink-antikink pair which has nucleated is
driven apart. In this regime, the kink motion during the
lifetime of the kink is purely deterministic, and a kink
annihilates with probability 1 with an antikink being gen-
erated by another nucleation event. However, this is no
longer true for weak driving forces. Here, diffusion of
kinks and antikinks becomes important. The case of mod-
erate and weak forces was treated by Hinggi, Marchesoni,
and Sodano [8]. Although one expects in the equilibrium
limit a nucleation rate with an activation energy 2E; of
the nucleus, which is twice the kink energy, an activation
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energy of 3E; has been predicted by Ref. [8], and sub-
sequently by Refs. [9,12]. However, we will show that
careful definitions of nucleation and recombination pro-
cesses yield a different result, namely, the expected de-
pendence on the activation energy 2E;.

The dynamics of kinks and antikinks in space-time is
schematically illustrated in Fig. 1. In the driven case,
part (a), a kink and an antikink are driven apart after
a nucleation process (empty triangles) and annihilate
eventually with an antikink and a kink originating from a
different nucleation process (rectangles). Obviously, this
picture cannot be applied in the equilibrium case shown in
part (b). Here the diffusive motion of the free kinks gives
them a strongly enhanced probability of returning to its
nucleation partner. The history of kinks which annihilate
with their original antikink is represented by closed loops
(bubbles) in Fig. 1(b). Only a negligible small fraction
of extended trajectories exists. The works [8,9,12] which
arrive at a nucleation rate with activation energy 3Ej
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FIG. 1. Space-time plot of the dynamics of kinks and an-
tikinks. In the driven case [part (a)] the motion is mainly a

drift; kink and antikink of a nucleation process (empty trian-
gles) recombine with different antikinks and kinks (full rect-
angles). At equilibrium [part (b)], the motion is diffusive;
nucleation and annihilation of the same pair (full triangles)
dominates.
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consider only the open trajectories and neglect the closed
ones. As a consequence, these works predict a kink
lifetime proportional to exp(2E/kT), whereas the theory
presented below leads to a kink lifetime proportional
to exp(Er/kT). Neglecting the closed trajectories is
inconsistent with the experimental definition of free kinks.
All kinks represented in this figure contribute to the kink
density. Let us present now a natural way of treating the
equilibrium case.

Effective nucleus.—In order to overcome the problem of
the large critical nucleus, we introduce an effective critical
nucleus with a separation s¢ of the kink and the antikink,
which is much larger than a kink width but much smaller
than an average equilibrium separation of kinks. This is a
key step in our work. Below we show that the equilibrium
kink lifetime 7.4 depends on sg and is given by

S
Teq — ﬁ’ 1)

where n and D are the kink density and the diffusion
constant, respectively. Note that this is where we differ
from previous treatments, where 7 =~ 1/n? is assumed
[8]. Since the nucleation rate j is proportional to n/7,
we will find j < n? « exp(—2E/kT) instead of j « n3 o
exp(—3E/kT).

The effective critical nucleus is associated with a
closed trajectory of minimal (spatial) size s¢ in Fig. 1(b).
This size is thus a (spatial) cutoff length of the closed
trajectories. The energy of an undriven pair as a function
of the separation coordinate s is shown by the full curve in
Fig. 2. The well A corresponds to a given uniform state.
For the sine-Gordon system it is important to distinguish
between the rates j; and j_ associated with a nucleation
of a kink-antikink pair (B+) and an antikink-kink pair
(B-). An energy slightly less than 2E} is needed to form
a pair. For s = 50 the energy still increases with s but
only exponentially weakly due to the typical long-distance
interaction of a kink and an antikink [7]. In this regime

FIG. 2. Qualitative dependence of the energy on the kink-
antikink separation s. j+ denote nucleation rates of free
kinks (B+) out of the valley A. Recombination processes
correspond to the fall back into A, or into the wells Cx+
which illustrate antikinks created by other nucleation events
(* indicates pairs associated with droplets corresponding to
different Peierls valleys).
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they can already be regarded as free diffusing particles.
In contrast to the strongly driven case, a free kink has the
possibility to annihilate with the antikink with which it
was generated. In Fig. 2 this corresponds to a return to A.
On the other hand, the kink will leave the antikink with
a certain probability and eventually annihilate with an
antikink that was generated independently. This process
is illustrated in Fig. 2 by falling from B+ into the well
C.. The mean separation of A and C+ is given by the
inverse antikink density m~!. Below, periodic boundary
conditions will be assumed which allow one to set finally
m equal to the stationary kink density n.

It is important to realize that the kinks in the flat
portion of this energy diagram are those that are counted
if one evaluates the kink density within equilibrium
statistical mechanics. Thus the choice of the size s
of the critical nucleus is to some extent arbitrary. This
choice affects kinetic quantities like the kink nucleation
rate and the kink lifetime. However, as we will show,
stationary quantities such as the stationary kink density
n are independent of this choice as long as sy is small
enough. We emphasize again the internal consistency of
our approach: Below we evaluate the kink nucleation
rate and the kink lifetime independently and use these
results to find the kink density n.

Before presenting our calculation, let us briefly discuss
the energy diagram if a small driving force is applied.
This corresponds to the dashed curve in Fig. 2. The
rates j+ and j- can now be associated with nucleation
processes in the direction of the field and against the
direction of the field, respectively. Different regimes can
be distinguished depending on the strength of the applied
force F. In the diffusive regime the applied driving
force is so small that the energy 27w Fn~! gained by a
kink from the driving force over the interkink distance is
small compared to the thermal energy k7. This situation
is essentially the same as at equilibrium. In the weakly
driven regime, where the applied force exceeds

Fcr,l = I’lkT/27T s (2)

the drift induced by the external field becomes important.
However, in this weakly driven regime kinks still have
a substantial probability to annihilate with the partner
antikink. To suppress the annihilation with the partner
antikink we need a driving force which exceeds

Fcr,2 = kT/27TS() . (3)

For driving forces F > F,, we enter the strongly driven
regime where the applied force is sufficiently strong to
separate a pair with large probability [Fig. 1(a)]. This
strongly driven regime was the main subject of Ref. [6].
Here we emphasize the diffusive regime and the weakly
driven case where F = F,» [Fig. 1(b)].

Model.—The model which we will consider is the
overdamped sine-Gordon equation [3]

y8,0 = —Vosing + F + k260 + {, 4)
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which describes the overdamped dynamics of the order-
parameter field 6(x, ¢) in a periodic potential of amplitude
Vo, with a damping constant 7y, a diffusion constant «, and
subject to the driving force .  We can assume F = 0
without the loss of generality. As mentioned above we as-
sume periodic boundary conditions (L + x,t) = 0(x,1),
where L is the sample length which exceeds every other
relevant length scale of the problem (except probably
the diverging size of the exact nucleus). The small sto-
chastic force ¢ with zero mean ({) = 0 has a strength
(L (x,0)(%,7)) = 2vkTS(x — x)6(t — ), where kT is
the thermal energy, and the occurrence of y reflects the
fluctuation-dissipation theorem. Let us recall some prop-
erties [6] of Eq. (4). Multistability occurs for values F <
Vo. The uniform, stationary, and linearly stable states
are given by 6,; = 217 + arcsin(F/Vy) (Peierls valleys)
with integer /. There exists an energy functional E[6]
such that Eq. (4) can be rewritten in the form yd,0 =
—S8E[#]/86. Under equilibrium conditions (i.e., F = 0)
all the 6;; have the same energy. In the presence of a
nonvanishing force (0 < F < V) the stationary solutions
6, constitute a set of metastable states. Two adjacent
Peierls valleys are separated in function space by a saddle
which corresponds to a kink-antikink pair. A kink 6;(x —
xo) centered at xo connects a Peierls valley 6,; with its
neighbor 6, ;1. An antikink is reversely defined by 6, =
0;(—x + xp). Hence a kink-antikink pair at location xg
and with a (not too small) separation s can be written ap-
proximately as Oy(x) = 0;(x — xo + s/2) + 0)(—x +
xo + s/2) — 2@ (I + 1). The exact critical nucleus be-
ing an exact saddle point of the energy functional cor-
responds to a pair with a separation & = &;In(Vy/F),
where &g = /«/V) is the kink size. In the weakly driven
case, F' can be arbitrarily small such that the separation &
is larger than the inverse kink density n~! or even larger
than the system length L. In this case, the mathemati-
cally exact critical nucleus has no physical meaning.

Balance equation.—The stationary kink density n can
be obtained from a balance equation. Imagine that the
average kink lifetime 7+ = 7(*=F,m) for given F and
the fixed antikink density m is known. Here 74 and
7_ refer to kink-antikink pairs and to antikink-kink
pairs, respectively. The stationarity condition requires
that the nucleation rates j+ of the kinks be equal to their
recombination rates n+/7+. Here ny and n_ denote
densities of kink-antikink pairs and antikink-kink pairs,
respectively. The symmetry of the sine-Gordon equation
implies = j.(—F) = j_(F). The total kink density
n = ny + n_ is then given by the implicit Equation

j+ T+ + joT- =n. (5)

One concludes from this result that the stationary kink
density is an even function of F.

Kink lifetime.—The kink lifetimes 7+ for fixed an-
tikink density m can be calculated with the help of
a Langevin equation for the kink separation s. This

Langevin equation follows from a projection of the
Eq. (4) onto the quasi-Goldstone mode &6y/8s =
0r(x — xo + 5/2)/2 + 0;(—x + xo + 5/2)/2 asso-
ciated with an infinitesimal variation of s. Note that
there is also an orthogonal Goldstone mode §68y/8xy =
Or(—x + xo + 5/2) — Oi(x — xo + 5/2) associ-
ated with an infinitesimal displacement &xy, of the
pair. The Fokker-Planck equation, which is equiva-
lent to the Langevin equation, reads in the stationary
case d,(xFP — Do,P) = 0, with an effective force
F = 2 F and diffusion constant D= 2ukT /2. Here,
u = 2mk/yE} is the kink mobility. Note that the values
of F and D for the relative coordinate s are twice as
large as for a single kink. The stationary Fokker-Planck
equation must be solved with a source at s = sy and with
sinks at s = 0 and s = m™' (see Fig. 2). The source
describes the nucleation of a pair, and the sinks model
kink-antikink annihilation. The stationary Fokker-Planck
equation is of the form d;,J = 0 and can, therefore, be
integrated. This leads to a constant current density J.
However, the source implies a discontinuity of the current
density of strength j- at so. The absorbing boundary
conditions demand P(0) = P(m~!) = 0. The lifetimes
7+ are defined by the ratio of the total probability [ ds P
and the injected current j.. We find

1), ©

_ L Sof 11— exp(F Fso/D) _

T F son 1 — exp(¥F/nD)
where m has been replaced everywhere by n. This result
indicates the existence of the above mentioned three dif-
ferent regimes of the force. Let us first give a remark on
the strongly driven case, where F/V, cannot be neglected
in the nucleation rate [6,8]. Then the nucleation rate j_
is exponentially suppressed and the total nucleation rate j
equals j+. Obviously, nop = n4 holds, and from Eq. (6)
7(n) = 1/Fn follows. The rate obtained from Eq. (5) be-
comes finally j = 2un?, with the kink velocity u = F/2.
This result is in accordance with the nondiffusive limit dis-
cussed in Refs. [5,6].

On the other hand, the equilibrium-kink lifetime given
by Eq. (1) follows from Eq. (6) by setting F = 0.

Nucleation rate.—Let us now derive the nucleation
rates j+. Within multidimensional Kramers theory [13],
the rate is calculated by solving a stationary Fokker-
Planck equation in the function space {#(x)}. Usually,
one prescribes a normalized and thermalized populations
in the metastable well, imposes an absorbing boundary
condition beyond the saddle, and determines the stationary
flux j+ across the saddle. Here, we have to proceed
differently, since we deal with nucleation into a region
which is exponentially flat (Fig. 2).

The above emphasized exponential flatness of the
saddle is taken into account in the following way. Firstly,
since the kink is considered to be free for s > 50, we must
impose the absorbing boundary at s = so. Secondly,
due to the existence of the quasi-Goldstone mode, the
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integration across the saddle in function space cannot
be treated anymore by a Gaussian approximation as in
the usual case where the saddle has a finite curvature.
It rather has to be treated similar to the translational
Goldstone mode and leads to a term proportional to sg.
By proceeding as in Ref. [6] but taking into consideration
the differences just mentioned, the rate per length can be
expressed by

L
gl( )dnl

o1
== Z f”)o(so)d exp(—En/kT). )

Here, terms of order 27 Fso/kT and of order F/Vj are
neglected. Hence the activation energy is simply given by

= 2F}, where E; = 8./kVy is the equilibrium-kink
energy [6]. The ratio

S\ [AdAT ]_[ ®)

contains the stability eigenvalues A$Y of the metastable
state (index s) and the critical nucleus (index N) with
respect to perturbations o exp(Af). As usual, the
(quasi-) zero modes are excluded in the products. For
a well-separated pair, Eq. (8) is the normalized partition
function of a kink-antikink pair without self-interaction
and is given by Zy/Z, = 4T' /27, where T = V,/y
and where terms of the order F/V( are neglected [6].
The variables 79 and 7; are the orthonormal-mode
coordinates which belong to the kink-separation mode
and the translational mode. It holds [6]

lz

N
==

dng = dszj(ﬁeN/Ss)zdx,
dn? = dx? 2
i x5 | (80n/6x0) dx. 9)

Using the quasi-Goldstone and the Goldstone modes
given above, one finds for the ratio of the integrals in
Eq. (7) a value 2L/sg. The nucleation rate becomes
finally

4T
jo = j+ = — exp(—2E;/kT). (10)
TS0

The stationary kink density n follows immediately from
Egs. (5), (6), and (10):

[2voE
n=Req = 7T;<Okk exp(— Ek/kT) (1)

This is the equilibrium kink density n.q found in Ref. [6]
from equilibrium statistical mechanics. By deriving
Eq. (11) we used that 7, + 7_ = so/nD = 27¢q for
F < F¢p, which is independent of F/F..;. This
follows from the specific symmetry of the sine-Gordon
equation, and is different, for example, in a bistable
system where only a single saddle exists for a given
valley [4,11,12].
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The stationary kink density (11) is independent of
the specific value of syp. The kinks to be counted at
a fixed time ¢ must be nucleated in a strip of width
7 = 5o in Fig. 1(b). Since the nucleation rate per length is
proportional to 1/sg, one finds a kink density independent
of so. A variation of s( affects only the time scale but not
stationary quantities.

Our result is valid for 1/n > sy > &), with the
kink width & = +/k/Vy, and for 27 Fsy << kT. These
conditions can only be satisfied if F < kT /27 &,. Since
Kramers theory is valid for kT << Ey = 164/kVj, one
concludes that also F < V) is satisfied.

Our approach permits the investigation of the fluctu-
ation spectra of kink and antikink densities [5] close to
equilibrium over a much larger range of frequencies than
was previously possible. Now, the density-density corre-
lation spectra are expected to depend on s9. A discussion
of the fluctuation problem will be provided elsewhere.

In summary, we have developed a theory of kink
nucleation near equilibrium by introducing an effective
size so of the critical nucleus. It turns out that the
nucleation rate depends on the usual Arrhenius factor
containing the activation energy 2E; of the nucleus,
and the equilibrium kink lifetime is proportional to
exp(Ex/kT). Although our result has to be expected, it is
new and in contrast to earlier theories. The kink density
n is independent of both 5o and of the force F as long
as 2w Fso << kT. This density is in accordance with the
result obtained from equilibrium statistical mechanics.
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