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Nucleation of Weakly Driven Kinks
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We study nucleation of kink-antikink pairs under weak nonequilibrium conditions and in the strong
friction limit. We introduce an effective critical nucleus of size so, which is small compared to the
inverse kink density but large compared to a kink size. We evaluate independently the nucleation
rate and the kink lifetime from a multidimensional Kramers theory and by studying kink-antikink
annihilation processes. We find a kink density which is independent of so and of the driving force
in this regime. The result is in accordance with the equilibrium kink density obtained from statistical
mechanics.

PACS numbers: 11.10.Lm, 11.10.Kk

The nucleation and dynamics of solitary structures in
spatially one-dimensional and multistable systems are of
great interest in theoretical [1—9], experimental [10], and
computational [11,12] physics. In such systems the funda-
mental kinetic processes are a nucleation of kink-antikink
pairs, their subsequent propagation, and their eventual an-
nihilation. It is the purpose of this Letter to discuss these
kinetic coefficients near equilibrium, where the external
driving force F is very small. This regime is difficult to
analyze, since a naive extension of the well-established nu-
cleation theory for large I yields a critical nucleus with a
size that diverges at equilibrium. At small temperatures,
the density of kinks and antikinks is finite and sets an up-
per length scale over which nucleation and annihilation
processes have to occur. In the framework of equilibrium
statistical mechanics, moreover, kinks and antikinks are re-
garded as free particles. For reasons of consistency, it is
thus necessary to develop a picture of the nucleation and
annihilation processes which permits essentially free dif-
fusive motion during the lifetime of a kink.

A theory of kink dynamics in multistable systems was
outlined already in the mid-fifties in connection with dis-
location theory by Seeger [1] and Lothe and Hirth [2].
Much work has been focused on the overdamped sine-
Gordon chain subject to a driving force and to thermal
noise. A quantitative theory which permitted the evalu-
ation of the average speed and the discussion of Auctu-
ations away from this average behavior was developed
by Buttiker and Landauer [6], where the nucleation rate
and the annihilation rate were evaluated for driving forces
so large that a kink-antikink pair which has nucleated is
driven apart. In this regime, the kink motion during the
lifetime of the kink is purely deterministic, and a kink
annihilates with probability 1 with an antikink being gen-
erated by another nucleation event. However, this is no
longer true for weak driving forces. Here, diffusion of
kinks and antikinks becomes important. The case of mod-
erate and weak forces was treated by Hanggi, Marchesoni,
and Sodano [8]. Although one expects in the equilibrium
limit a nucleation rate with an activation energy 2EI, of
the nucleus, which is twice the kink energy, an activation

energy of 3Ek has been predicted by Ref. [8], and sub-
sequently by Refs. [9,12]. However, we will show that
careful definitions of nucleation and recombination pro-
cesses yield a different result, namely, the expected de-
pendence on the activation energy 2E~.

The dynamics of kinks and antikinks in space-time is
schematically illustrated in Fig. 1. In the driven case,
part (a), a kink and an antikink are driven apart after
a nucleation process (empty triangles) and annihilate
eventually with an antikink and a kink originating from a
different nucleation process (rectangles). Obviously, this
picture cannot be applied in the equilibrium case shown in
part (b). Here the diffusive motion of the free kinks gives
them a strongly enhanced probability of returning to its
nucleation partner. The history of kinks which annihilate
with their original antikink is represented by closed loops
(bubbles) in Fig. 1(b). Only a negligible small fraction
of extended trajectories exists. The works [8,9,12] which
arrive at a nucleation rate with activation energy 3EI,

I IG. 1. Space-time plot of the dynamics of kinks and an-
tikinks. In the driven case [part (a)] the motion is mainly a
drift; kink and antikink of a nucleation process (empty trian-
gles) recombine with different antikinks and kinks (full rect-
angles). At equilibrium [part (b)], the motion is diffusive;
nucleation and annihilation of the same pair (full triangles)
dominates.
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which describes the overdamped dynamics of the order-
parameter field 0(x, t) in a periodic potential of amplitude
Vp, with a damping constant y, a diffusion constant ~, and
subject to the driving force F. We can assume F ~ 0
without the loss of generality. As mentioned above we as-
sume periodic boundary conditions 0(L + x, t) = 0(x, t),
where I is the sample length which exceeds every other
relevant length scale of the problem (except probably
the diverging size of the exact nucleus). The small sto-
chastic force g with zero mean (g) = 0 has a strength
(g(x, t)g(x, t)) = 2ykTB(x —x)B(t —t), where kT is
the thermal energy, and the occurrence of y rejects the
fluctuation-dissipation theorem. Let us recall some prop-
erties [6] of Eq. (4). Multistability occurs for values F (
Vp. The uniform, stationary, and linearly stable states
are given by 0, i = 2l~ + arcsin(F/Vp) (Peierls valleys)
with integer l. There exists an energy functional E[0]]
such that Eq. (4) can be rewritten in the form y6, 0 =
—6E[0 ]/60. Under equilibrium conditions (i.e., F = 0)
all the 0, & have the same energy. In the presence of a
nonvanishing force (0 ( F ( Vp) the stationary solutions
0, ~ constitute a set of metastable states. Two adjacent
Peierls valleys are separated in function space by a saddle
which corresponds to a kink-antikink pair. A kink 0t, (x-
xp) centered at xp connects a Peierls valley 0, i with its
neighbor 0, &+ &. An antikink is reversely defined by 0, =
0q( —x + xp). Hence a kink-antikink pair at location xp
and with a (not too small} separation s can be written ap-
proximately as 0~(x) = 01,(x —xp + s/2) + 0t-( —x +
xp + s/2) —2'(l + 1). The exact critical nucleus be-
ing an exact saddle point of the energy functional cor-
responds to a pair with a separation s = gp ln(Vp/F),
where sp = Q~/Vp is the kink size. In the weakly driven
case, F can be arbitrarily small such that the separation s
is larger than the inverse kink density n ' or even larger
than the system length L. In this case, the mathemati-
cally exact critical nucleus has no physical meaning.

Balance equation, —The stationary kink density n can
be obtained from a balance equation. Imagine that the
average kink lifetime r = r(~F, m) for given F and
the fixed antikink density m is known. Here ~+ and

refer to kink-antikink pairs and to antikink-kink
pairs, respectively. The stationarity condition requires
that the nucleation rates j of the kinks be equal to their
recombination rates n /r Here n. + and n denote
densities of kink-antikink pairs and antikink-kink pairs,
respectively. The symmetry of the sine-Gordon equation
implies = j+(—F) = j (F). The total kink density
n = n+ + n is then given by the implicit Equation

j+ '7+ + j— 7 — = A .

One concludes from this result that the stationary kink
density is an even function of F.

Kink lifetime —The kin.k lifetimes r~ for fixed an-
tikink density m can be calculated with the help of
a Langevin equation for the kink separation s. This

Langevin equation follows from a projection of the
Eq. (4) onto the quasi-Goldstone mode 60&/6s =
0t. (x —xp + s/2)/2 + 0k( —x + xp + s/2)/2 asso-
ciated with an infinitesimal variation of s. Note that
there is also an orthogonal Goldstone mode 60~/Bxp =
0k( —x + xp + s/2) —0i, (x —xp + s/2) associ-
ated with an infinitesimal displacement exp of the
pair. The Fokker-Planck equation, which is equiva-
lent to the Langevin equation, reads in the stationary
case B,(~FP —DB,P) = 0, with an effective force
F = 2p, F and diffusion constant D = 2p, kT/2' Her.e,
p, = 2~~/y Ek is the kink mobility. Note that the values
of F and D for the relative coordinate s are twice as
large as for a single kink. The stationary Fokker-Planck
equation must be solved with a source at s = sp and with
sinks at s = 0 and s = m ' (see Fig. 2). The source
describes the nucleation of a pair, and the sinks model
kink-antikink annihilation. The stationary Fokker-Planck
equation is of the form B,J = 0 and can, therefore, be
integrated. This leads to a constant current density J.
However, the source implies a discontinuity of the current
density of strength j at sp. The absorbing boundary
conditions demand P(0) = P(m ') = 0. The lifetimes

are defined by the ratio of the total probability f ds P
and the injected current j . We find

sp ( 1 1 —exp(~ Fsp/D)
F (spn 1 —exp(~F/nD) )

' (6)

where I has been replaced everywhere by n. This result
indicates the existence of the above mentioned three dif-
ferent regimes of the force. Let us first give a remark on
the strongly driven case, where F/Vp cannot be neglected
in the nucleation rate [6,8]. Then the nucleation rate j
is exponentially suppressed and the total nucleation rate j
equals j+. Obviously, np = n+ holds, and from Eq. (6)
r(n) = 1/Fn follows. The rate obtained from Eq. (5) be-
comes finally j = 2un, with the kink velocity u = F/2
This result is in accordance with the nondiffusive limit dis-
cussed in Refs. [5,6].

On the other hand, the equilibrium-kink lifetime given
by Eq. (1) follows from Eq. (6) by setting F = 0.

Nucleation rate. —Let us now derive the nucleation
rates j~. Within multidimensional Kramers theory [13],
the rate is calculated by solving a stationary Fokker-
Planck equation in the function space (0(x)). Usually,
one prescribes a normalized and thermalized populations
in the metastable well, imposes an absorbing boundary
condition beyond the saddle, and determines the stationary
Aux j~ across the saddle. Here, we have to proceed
differently, since we deal with nucleation into a region
which is exponentially fiat (Fig. 2).

The above emphasized exponential flatness of the
saddle is taken into account in the following way. Firstly,
since the kink is considered to be free for s ~ sp, we must
impose the absorbing boundary at s = sp. Secondly,
due to the existence of the quasi-Goldstone mode, the
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integration across the saddle in function space cannot
be treated anymore by a Gaussian approximation as in
the usual case where the saddle has a finite curvature.
It rather has to be treated similar to the translational
Goldstone mode and leads to a term proportional to sp.
By proceeding as in Ref. [6] but taking into consideration
the differences just mentioned, the rate per length can be
expressed by

I Z„jp dpi
I. Z, Jno(so) d

exp( —Etv /kT) . (7)

Here, terms of order 2rrFsp/kT and of order F/Vp are
neglected. Hence the activation energy is simply given by
E~ = 2Ek, where Et, = 8gtcVp is the equilibrium-kink
energy [6]. The ratio

ZN

Z.

A'
n

gN
n, =2 n

contains the stability eigenvalues A' of the metastable
state (index s) and the critical nucleus (index N) with
respect to perturbations ~ exp(At). As usual, the
(quasi-) zero modes are excluded in the products. For
a well-separated pair, Eq. (8) is the normalized partition
function of a kink-antikink pair without self-interaction
and is given by Z&/Z, = 4I /2rr, where I = Vp/7
and where terms of the order F/Vp are neglected [6].
The variables gp and g i are the orthonormal-mode
coordinates which belong to the kink-separation mode
and the translational mode. It holds [6]

The stationary kink density (ll) is independent of
the specific value of sp. The kinks to be counted at
a fixed time t must be nucleated in a strip of width
r ~ sp in Fig. 1(b). Since the nucleation rate per length is
proportional to I/sp, one finds a kink density independent
of sp. A variation of sp affects only the time scale but not
stationary quantities.

Our result is valid for I/n » sp » sp, with the
kink width sp = Qtc/Vp, and for 2rrFsp « kT. These
conditions can only be satisfied if F «kT/2rrgp Sinc. e
Kramers theory is valid for kT « Etv = 16gtcVp, one
concludes that also F « Vp is satisfied.

Our approach permits the investigation of the fIuctu-
ation spectra of kink and antikink densities [5] close to
equilibrium over a much larger range of frequencies than
was previously possible. Now, the density-density corre-
lation spectra are expected to depend on sp. A discussion
of the fluctuation problem will be provided elsewhere.

In summary, we have developed a theory of kink
nucleation near equilibrium by introducing an effective
size sp of the critical nucleus. It turns out that the
nucleation rate depends on the usual Arrhenius factor
containing the activation energy 2FI, of the nucleus,
and the equilibrium kink lifetime is proportional to
exp(Eq/kT). Although our result has to be expected, it is
new and in contrast to earlier theories. The kink density
n is independent of both sp and of the force F as long
as 2~Fsp && kT. This density is in accordance with the
result obtained from equilibrium statistical mechanics.

This work was supported by the Swiss National Science
Foundation.

d rip
= ds (60~/8 s) dx,

drit = dxp (60tv/Bxp) dx .

Using the quasi-Goldstone and the Goldstone modes
given above, one finds for the ratio of the integrals in

Eq. (7) a value 2L/sp. The nucleation rate becomes
finally

J— = J+ = 4r
exp( —2Et. /kT) .

7TSp
(10)

The stationary kink density n follows immediately from
Eqs. (5), (6), and (10):

7l =
PZeq

2VpEJ
exp( —Ek/kT) .

~~kT

This is the equilibrium kink density n, q found in Ref. [6]
from equilibrium statistical mechanics. By deriving
Eq. (11) we used that r+ + r = sp/nD = 2r, q for
F «F«2, which is independent of F/F« i. This
follows from the specific symmetry of the sine-Gordon
equation, and is different, for example, in a bistable
system where only a single saddle exists for a given
valley [4,11,12].
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