## Asymptotic Scaling in the Two-Dimensional O(3) $\sigma$ Model at Correlation Length 10<sup>5</sup>

Sergio Caracciolo,<sup>1,\*</sup> Robert G. Edwards,<sup>2,†</sup> Andrea Pelissetto,<sup>3,‡</sup> and Alan D. Sokal<sup>4,¶</sup>

<sup>1</sup>Dipartimento di Fisica, Università di Lecce and INFN–Sezione di Lecce, I-73100 Lecce, Italy

<sup>2</sup>Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306

<sup>3</sup>Dipartimento di Fisica and INFN–Sezione di Pisa, Università degli Studi di Pisa, I-56100 Pisa, Italy

<sup>4</sup>Department of Physics, New York University, 4 Washington Place, New York, New York 10003

(Received 10 November 1994)

We carry out a high-precision Monte Carlo simulation of the two-dimensional O(3)-invariant  $\sigma$  model at correlation lengths  $\xi$  up to ~10<sup>5</sup>. Our work employs a powerful method for extrapolating finitevolume Monte Carlo data to infinite volume, based on finite-size-scaling theory. We discuss carefully the systematic and statistical errors in this extrapolation. We then compare the extrapolated data to the renormalization-group predictions. The deviation from asymptotic scaling, which is ~25% at  $\xi \sim 10^2$ , decreases to ~4% at  $\xi \sim 10^5$ .

PACS numbers: 11.10.Hi, 05.70.Jk, 11.10.Jj, 11.15.Ha

Two-dimensional nonlinear  $\sigma$  models are important "toy models" in elementary-particle physics because they share with four-dimensional non-Abelian gauge theories the property of perturbative asymptotic freedom [1]. However, the nonperturbative validity of asymptotic freedom has been questioned [2], and numerical tests of asymptotic scaling in the O(3)  $\sigma$  model at correlation length  $\xi \sim 100$  have shown discrepancies of order 25% [3,4]. In this Letter we employ a finite-size-scaling extrapolation method due originally to Lüscher, Weisz, and Wolff [5–8] to obtain high-precision estimates (errors  $\leq 2\%$ ) in the O(3)  $\sigma$  model at correlation lengths  $\xi$  up to  $\sim 10^5$ . We find that the discrepancy has decreased to  $\approx 4\%$ , in good agreement with the asymptotic-freedom predictions.

We study the lattice  $\sigma$  model taking values in the unit sphere  $S^{N-1} \subset \mathbb{R}^N$ , with nearest-neighbor action  $\mathcal{H}(\boldsymbol{\sigma}) = -\beta \sum \boldsymbol{\sigma}_x \cdot \boldsymbol{\sigma}_y$ . Perturbative renormalization-group computations predict that the (infinite-volume) correlation lengths  $\xi^{(\exp)}$  and  $\xi^{(2)}$  [10] behave as

$$\xi^{\#}(\beta) = C_{\xi^{\#}} e^{2\pi\beta/(N-2)} \left(\frac{2\pi\beta}{N-2}\right)^{-1/(N-2)} \times \left[1 + \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \cdots\right]$$
(1)

as  $\beta \to \infty$ . Three-loop perturbation theory yields [12,13]

$$a_1 = -0.014127 + (\frac{1}{4} - 5\pi/48)/(N-2).$$
 (2)

The nonperturbative constant  $C_{\xi^{(exp)}}$  has been computed recently using the thermodynamic Bethe ansatz [14]:

$$C_{\xi^{(\exp)}} = 2^{-5/2} \left(\frac{e^{1-\pi/2}}{8}\right)^{1/(N-2)} \Gamma\left(1 + \frac{1}{N-2}\right).$$
(3)

The remaining nonperturbative constant is known analytically only at large N [15]:

$$C_{\xi^{(2)}}/C_{\xi^{(\exp)}} = 1 - 0.003\,225/N + O(1/N^2).$$
 (4)

Previous Monte Carlo studies up to  $\xi \sim 100$  agree with these predictions to within about (20–25)% for N = 3, 6% for N = 4, and 2% for N = 8 [4,16].

The extrapolation method [7] is based on the finite-sizescaling ansatz

$$\frac{\mathcal{O}(\beta, sL)}{\mathcal{O}(\beta, L)} = F_{\mathcal{O}}(\xi(\beta, L)/L; s) + O(\xi^{-\omega}, L^{-\omega}), \quad (5)$$

where  $\mathcal{O}$  is any long-distance observable, *s* is a fixed scale factor (usually s = 2), *L* is the linear lattice size,  $F_{\mathcal{O}}$ is a universal function, and  $\omega$  is a correction-to-scaling exponent. We make Monte Carlo runs at numerous pairs  $(\beta, L)$  and  $(\beta, sL)$ ; we then plot  $\mathcal{O}(\beta, sL)/\mathcal{O}(\beta, L)$  vs  $\xi(\beta, L)/L$ , using those points satisfying both  $\xi(\beta, L) \ge$ some value  $\xi_{\min}$  and  $L \ge$  some value  $L_{\min}$ . If all these points fall with good accuracy on a single curve, we choose a smooth fitting function  $F_{\mathcal{O}}$ . Then, using the functions  $F_{\xi}$ and  $F_{\mathcal{O}}$ , we extrapolate the pair  $(\xi, \mathcal{O})$  successively from  $L \rightarrow sL \rightarrow s^2L \rightarrow \cdots \rightarrow \infty$ . See [7] for how to calculate statistical error bars on the extrapolated values.

We have chosen to use functions  $F_{\mathcal{O}}$  of the form

$$F_{\mathcal{O}}(x) = 1 + a_1 e^{-1/x} + \dots + a_n e^{-n/x}.$$
 (6)

Typically a fit of order  $3 \le n \le 12$  is sufficient; we increase *n* until the  $\chi^2$  of the fit becomes essentially constant. The resulting  $\chi^2$  value provides a check on the systematic errors arising from corrections to scaling and/or from inadequacies of the form (6). The discrepancies between the extrapolated values from different *L* at the same  $\beta$  can also be subjected to a  $\chi^2$  test. Further details on the method can be found in [7].

We simulated the two-dimensional O(3)  $\sigma$  model, using the Wolff embedding algorithm with standard Swendsen-Wang updates [11,17,18]; critical slowing down appears to be completely eliminated. We ran on lattices L = 32, 48, 64, 96, 128, 192, 256, 384, 512 at 180 different pairs ( $\beta$ , L) in the range 1.65  $\leq \beta \leq 3.00$  (corresponding to  $20 \leq \xi_{\infty} \leq 10^5$ ). Each run was between  $10^5$  and  $5 \times 10^6$ iterations, and the total CPU time was 7 yr on an IBM RS-6000/370. The raw data will appear in [19].

Our data cover the range  $0.15 \leq \xi(L)/L \leq 1.0$ , and we found tentatively that a tenth-order fit (6) is indicated; see Table I. Next we took  $\xi_{\min} = 20$  and sought to

© 1995 The American Physical Society 1891

TABLE I.  $\chi^2$  and confidence level for the fit (6) of  $\xi(\beta, 2L)/\xi(\beta, L)$  vs  $\xi(\beta, L)/L$ . DF is the number of degrees of freedom. The first (second)  $L_{\min}$  value applies for  $\xi(L)/L \leq 0.7$  (>0.7). In all cases  $\xi_{\min} = 20$ .

| Lmin      | DF      | n = 7  | n = 8  | n = 9  | n = 10 | n = 11 | <i>n</i> = 12 |
|-----------|---------|--------|--------|--------|--------|--------|---------------|
| (64,64)   | 108 - n | 278.38 | 183.80 | 144.34 | 137.82 | 135.77 | 135.01        |
|           |         | 0.0%   | 0.0%   | 0.2%   | 0.5%   | 0.6%   | 0.5%          |
| (96,32)   | 107 - n | 228.85 | 164.46 | 120.38 | 124.87 | 122.15 | 120.48        |
|           |         | 0.0%   | 0.0%   | 1.9%   | 3.0%   | 3.7%   | 4.0%          |
| (96,64)   | 97 - n  | 207.32 | 137.18 | 108.23 | 103.13 | 102.02 | 101.59        |
|           |         | 0.0%   | 0.1%   | 7.1%   | 11.4%  | 11.5%  | 10.6%         |
| (96,96)   | 87 - n  | 190.61 | 115.05 | 100.99 | 93.90  | 93.89  | 93.73         |
|           |         | 0.0%   | 0.5%   | 4.1%   | 9.2%   | 8.0%   | 7.1%          |
| (128,32)  | 93 - n  | 160.17 | 121.29 | 99.35  | 94.82  | 94.20  | 86.65         |
|           |         | 0.0%   | 0.6%   | 12.1%  | 17.7%  | 16.8%  | 31.3%         |
| (128,64)  | 83 - n  | 139.60 | 95.94  | 78.23  | 72.91  | 72.89  | 68.43         |
|           |         | 0.0%   | 5.2%   | 34.6%  | 48.1%  | 44.9%  | 56.4%         |
| (128,96)  | 73 - n  | 126.20 | 79.03  | 71.12  | 64.33  | 63.29  | 59.72         |
|           |         | 0.0%   | 11.3%  | 25.3%  | 43.0%  | 43.1%  | 52.2%         |
| (128,128) | 64 - n  | 101.05 | 63.45  | 61.96  | 59.70  | 59.28  | 52.89         |
|           |         | 0.0%   | 23.1%  | 24.2%  | 27.6%  | 25.7%  | 43.9%         |
| (192,32)  | 75 - n  | 110.42 | 93.41  | 76.13  | 70.61  | 65.15  | 62.16         |
|           |         | 0.1%   | 1.8%   | 18.5%  | 29.6%  | 43.6%  | 50.6%         |
| (192,64)  | 65 - n  | 90.60  | 69.57  | 55.03  | 47.60  | 45.12  | 43.74         |
|           |         | 0.4%   | 12.3%  | 51.1%  | 75.0%  | 80.0%  | 81.4%         |
| (192,96)  | 57 - n  | 82.54  | 55.94  | 49.49  | 38.90  | 38.67  | 37.53         |
| ·         |         | 0.3%   | 23.0%  | 41.4%  | 79.4%  | 77.0%  | 77.8%         |

choose  $L_{\min}$  to avoid any detectable systematic error from corrections to scaling. There appear to be weak corrections to scaling ( $\leq 1.5\%$ ) in the region  $0.3 \leq$  $\xi(L)/L \leq 0.7$  for lattices with  $L \leq 64-96$ ; see the deviations plotted in Fig. 1. We therefore investigated systematically the  $\chi^2$  of the fits, allowing a different  $L_{\min}$ for  $\xi(L)/L \leq 0.7$  and >0.7; see Table I. A reasonable  $\chi^2$  is obtained when  $n \geq 9$  and  $L_{\min} \geq (128, 64)$ . Our preferred fit is n = 10 and  $L_{\min} = (128, 64)$ ; see Fig. 2,



FIG. 1. Deviation of points from fit to  $F_{\xi}$  with s = 2,  $\xi_{\min} = 20$ ,  $L_{\min} = 128$ , and n = 10. Symbols indicate L = 32 (+), 48 ( $\pm$ ), 64 ( $\times$ ), 96 ( $\times$ ), 128 ( $\Box$ ), 192 ( $\rtimes$ ), and 256 ( $\diamond$ ). Error bars are 1 standard deviation. Curves near zero indicate statistical error bars ( $\pm 1$  standard deviation) on the function  $F_{\xi}(x)$ .

where we compare also with the perturbative prediction

$$F_{\xi}(x;s) = s \left[ 1 - \frac{aw_0 \ln s}{2} x^{-2} - a^2 \left( \frac{w_1 \ln s}{2} + \frac{w_0^2 \ln^2 s}{8} \right) x^{-4} + O(x^{-6}) \right]$$
(7)

valid for  $x \gg 1$ , where a = 1/(N - 1),  $w_0 = (N - 2)/(2\pi)^2$ , and  $w_1 = (N - 2)/(2\pi)^2$ .



FIG. 2.  $\xi(\beta, 2L)/\xi(\beta, L)$  vs  $\xi(\beta, L)/L$ . Symbols indicate L = 32 (+), 48 ( $\oplus$ ), 64 (×), 96 (×), 128 ( $\Box$ ), 192 ( $\bowtie$ ), and 256 ( $\diamond$ ). Error bars are 1 standard deviation. Solid curve is tenth-order fit in (6), with  $\xi_{\min} = 20$  and  $L_{\min} = 128$  (64) for  $\xi(L)/L \leq 0.7$  (>0.7). Dashed curve is the perturbative prediction (7).

The extrapolated values  $\xi_{\infty}^{(2)}$  from different lattice sizes at the same  $\beta$  are consistent within statistical errors: only one of the 24  $\beta$  values has a  $\chi^2$  too large at the 5% level, and summing all  $\beta$  values we have  $\chi^2 = 86.56$ (106 degrees of freedom, level = 92%).

In Table II we show the extrapolated values  $\xi_{\infty}^{(2)}$  from our preferred fit and some alternative fits. The discrepancies between these values (if larger than the statistical errors) can serve as a rough estimate of the remaining systematic errors due to corrections to scaling. The statistical errors in our preferred fit are of order 0.2% (0.7%, 1.1%, 1.6%) at  $\xi_{\infty} \approx 10^2$  (10<sup>3</sup>, 10<sup>4</sup>, 10<sup>5</sup>), and the systematic errors are of the same order or smaller. The statistical errors at different  $\beta$  are strongly positively correlated.

In Fig. 3 (points + and ×) we plot  $\xi_{\infty,\text{estimate}(128,64)}^{(2)}$  divided by the two-loop and three-loop predictions (1)– (4). The discrepancy from three-loop asymptotic scaling, which is  $\approx 16\%$  at  $\beta = 2.0$  ( $\xi \approx 200$ ), decreases to  $\approx 4\%$  at  $\beta = 3.0$  ( $\xi \approx 10^5$ ). This is roughly consistent with the expected  $1/\beta^2$  corrections. The slight bump at 2.3  $\leq \beta \leq 2.6$  is probably spurious, arising from correlated statistical or systematic errors.

We can also try an "improved expansion parameter" [4,13,19,20] based on the energy  $E = \langle \boldsymbol{\sigma}_0 \cdot \boldsymbol{\sigma}_1 \rangle$ . First we invert the perturbative expansion [13,21]

$$E(\beta) = 1 - \frac{N-1}{4\beta} - \frac{N-1}{32\beta^2} - \frac{0.005\,993(N-1)^2 + 0.007\,270(N-1)}{\beta^3} + O(1/\beta^4)$$
(8)



FIG. 3.  $\xi_{\alpha,\text{estimate}(128,64)}^{(2)}/\xi_{\alpha,\text{theor}}^{(2)}$  vs  $\beta$ . Error bars are 1 standard deviation (statistical error only). There are four versions of  $\xi_{\alpha,\text{theor}}^{(2)}$ : standard perturbation theory in  $1/\beta$  gives points + (2-loop) and × (3-loop); "improved" perturbation theory in 1 - E gives points  $\Box$  (2-loop) and  $\diamond$  (3-loop).

and substitute into (1); this gives a prediction for  $\xi$  as a function of 1 - E. For *E* we use the value measured on the largest lattice; the statistical errors and finite-size corrections on *E* are less than  $5 \times 10^{-5}$ , and therefore induce a negligible error (less than 0.5%) on the predicted  $\xi$ . The corresponding observed/predicted ratios are also shown in Fig. 3 (points  $\Box$  and  $\diamondsuit$ ). The "improved" 3loop prediction is in excellent agreement with the data.

TABLE II. Estimated correlation lengths  $\xi_{\infty}^{(2)}$  as a function of  $\beta$ , from various extrapolations. Error bar is 1 standard deviation (statistical errors only). All extrapolations use s = 2,  $\xi_{\min} = 20$ , and n = 10. The first (second)  $L_{\min}$  value applies for  $\xi(L)/L \le 0.7$  (>0.7). Our preferred fit is  $L_{\min} = (128, 64)$ , shown in italics. Kim is the estimate from Ref. [6(c)].

| 3 ( )/     | · · ·         | 1             | mm            |                |               |               |               |               |
|------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|
| $L_{\min}$ | 1.90          | 1.95          | 2.00          | 2.05           | 2.10          | 2.15          | 2.20          | 2.25          |
| (96,64)    | 122.43 (0.25) | 166.79 (0.36) | 228.37 (0.55) | 311.54 (0.93)  | 420.52 (1.59) | 574.16 (2.51) | 774.24 (3.69) | 1039.1 (5.7)  |
| (96,96)    | 122.55 (0.25) | 166.95 (0.37) | 228.93 (0.57) | 312.29 (0.93)  | 421.61 (1.63) | 574.96 (2.51) | 776.03 (3.73) | 1038.2 (5.5)  |
| (128,32)   | 122.34 (0.29) | 166.68 (0.42) | 228.50 (0.66) | 311.84 (1.09)  | 422.67 (1.94) | 577.41 (3.13) | 779.33 (4.80) | 1048.9 (7.3)  |
| (128,64)   | 122.34 (0.29) | 166.66 (0.43) | 228.54 (0.67) | 311.99 (1.10)  | 422.73 (1.97) | 577.73 (3.12) | 780.04 (4.76) | 1048.7 (7.3)  |
| (128,96)   | 122.25 (0.29) | 166.54 (0.43) | 228.11 (0.66) | 311.59 (1.10)  | 421.71 (1.90) | 576.52 (3.06) | 778.40 (4.58) | 1045.9 (7.3)  |
| (128,128)  | 122.36 (0.29) | 166.68 (0.43) | 228.59 (0.69) | 312.06 (1.13)  | 422.89 (2.00) | 577.94 (3.09) | 781.23 (4.79) | 1046.7 (7.3)  |
| (192,32)   | 122.40 (0.40) | 166.95 (0.60) | 229.05 (0.93) | 312.94 (1.49)  | 424.90 (2.69) | 580.40 (4.39) | 784.04 (7.14) | 1057.7 (11.4) |
| (192,64)   | 122.41 (0.38) | 166.94 (0.57) | 229.15 (0.90) | 312.86 (1.44)  | 425.42 (2.62) | 580.91 (4.41) | 785.39 (7.11) | 1057.3 (11.2) |
| (192,96)   | 122.43 (0.39) | 167.02 (0.58  | 229.30 (0.90) | 313.23 (1.45)  | 426.08 (2.70) | 581.91 (4.44) | 787.63 (7.18) | 1057.9 (11.2) |
| Kim        | 122.0 (2.7)   |               | 227.8 (3.2)   | 306.6 (3.9)    | 419 (5)       | 574 (8)       | 766 (7)       |               |
|            |               |               |               |                |               |               |               |               |
| $L_{\min}$ | 2.30          | 2.40          | 2.50          | 2.60           | 2.70          | 2.80          | 2.90          | 3.00          |
| (96,64)    | 1403.4 (8.3)  | 2539.1 (17.9) | 4619.7 (38.6) | 8460.1 (81.7)  | 15499 (172)   | 28413 (362)   | 51624 (746)   | 93601 (1475)  |
| (96,96)    | 1402.0 (8.4)  | 2541.5 (19.2) | 4605.9 (44.5) | 8450.7 (101.2) | 15401 (218)   | 28119 (455)   | 51356 (934)   | 93641 (1923)  |
| (128,32)   | 1416.7 (10.6) | 2566.2 (20.8) | 4687.7 (41.3) | 8559.0 (81.1)  | 15594 (161)   | 28622 (322)   | 51955 (651)   | 94133 (1345)  |
| (128,64)   | 1416.8 (10.5) | 2568.8 (21.2) | 4671.7 (43.9) | 8569.0 (91.6)  | 15690 (189)   | 28737 (389)   | 52189 (779)   | 94643 (1554)  |
| (128,96)   | 1414.1 (10.8) | 2558.1 (22.8) | 4628.6 (48.4) | 8478.0 (104.3) | 15507 (226)   | 28360 (470)   | 51695 (961)   | 94033 (1930)  |
| (128,128)  | 1415.5 (11.2) | 2572.1 (26.2) | 4637.7 (62.0) | 8437.2 (143.2) | 15336 (311)   | 27947 (666)   | 51319 (1392)  | 94627 (2922)  |
| (192,32)   | 1425.3 (17.0) | 2584.4 (32.8) | 4716.9 (62.6) | 8622.7 (118.4) | 15638 (225)   | 28820 (432)   | 52345 (843)   | 94724 (1660)  |
| (192,64)   | 1427.6 (17.0) | 2582.2 (32.9) | 4702.7 (62.7) | 8625.0 (123.1) | 15802 (244)   | 28952 (482)   | 52502 (934)   | 95266 (1819)  |
| (192,96)   | 1427.0 (17.0) | 2584.2 (33.4) | 4688.2 (65.4) | 8599.8 (133.7) | 15660 (269)   | 28663 (542)   | 52314 (1082)  | 95304 (2163)  |
| Kim        | 1402 (22)     | 2499 (41)     | 4696 (128)    | 8022 (234)     | 15209 (449)   |               |               |               |

Let us summarize the conceptual basis of our analysis. The main assumption is that if the ansatz (5) with a given function  $F_{\xi}$  is well satisfied by our data for  $L_{\min} \leq$  $L \le 256$  and  $1.65 \le \beta \le 3$ , then it will continue to be well satisfied for L > 256 and  $\beta > 3$ . Obviously this assumption could fail, e.g., if [2] at some large correlation length ( $\geq 10^3$ ) the model crosses over to a new universality class associated with a finite- $\beta$  critical point. In this respect our work is subject to the same caveats as any other Monte Carlo work on a finite lattice. However, it should be emphasized that our approach does not assume asymptotic scaling [Eq. (1)], as  $\beta$  plays no role in our extrapolation method. Thus, we can make an unbiased test of asymptotic scaling. The good agreement of our data at large x with the perturbative prediction (7) guarantees that our extrapolated values  $\xi_{\infty}(\beta)$  will scale roughly as in (1), but it does not determine the constant  $C_{\xi}$ . The fact that we confirm (1) with the correct nonperturbative constant (3)/(4) is, we believe, good evidence in favor of the asymptotic-freedom picture.

Details of this work, including an analysis of the susceptibility  $\chi$ , will appear elsewhere [19].

We wish to thank Jae-Kwon Kim for sharing his data with us, and for challenging us to push to ever larger values of  $\xi/L$ . We also thank Henrik Flyvbjerg, Steffen Meyer, Adrian Patrascioiu, Erhard Seiler, and Ulli Wolff for helpful discussions. The authors' research was supported by CNR, INFN, DOE Contracts No. DE-FG05-85ER250000 and No. DE-FG05-92ER40742, NSF Grant No. DMS-9200719, and NATO CRG 910251.

\*Electronic address: CARRACCIO@LE.INFN.IT

<sup>¶</sup>Electronic address: SOKAL@NYU.EDU

- A. M. Polyakov, Phys. Lett. **59B**, 79 (1975); E. Brézin and J. Zinn-Justin, Phys. Rev. B **14**, 3110 (1976); W. A. Bardeen, B. W. Lee, and R. E. Shrock, Phys. Rev. D **14**, 985 (1976); J. B. Kogut, Rev. Mod. Phys. **51**, 659 (1979), Sec. VIII. C.
- [2] A. Patrascioiu and E. Seiler, Max-Planck-Institut Report No. MPI-Ph/91-88 (1991); Nucl. Phys. B (Proc. Suppl.) 30, 184 (1993).
- [3] U. Wolff, Nucl. Phys. B334, 581 (1990); P. Hasenfratz and F. Niedermayer, Nucl. Phys. B337, 233 (1990);
  J. Apostolakis, C.F. Baillie, and G.C. Fox, Phys. Rev. D 43, 2687 (1991).
- [4] U. Wolff, Phys. Lett. 248B, 335 (1990); Nucl. Phys. B (Proc. Suppl.) 20, 682 (1991).
- [5] M. Lüscher, P. Weisz, and U. Wolff, Nucl. Phys. **B359**, 221 (1991).
- [6] (a) J.-K. Kim, Phys. Rev. Lett. 70, 1735 (1993); (b) Nucl. Phys. B (Proc. Suppl.) 34, 702 (1994); (c) Phys. Rev. D 50, 4663 (1994); (d) Europhys. Lett. 28, 211 (1994); (e) Phys. Lett. 345B, 469 (1995).
- [7] S. Caracciolo, R.G. Edwards, S.J. Ferreira, A. Pelissetto, and A.D. Sokal, Phys. Rev. Lett. 74, 2969 (1995).

- [8] Our method [7] is essentially identical to that of Lüscher, Weisz, and Wolff [5]. The principal difference is that Lüscher *et al.* choose carefully their runs  $(\beta, L)$  so as to produce only a few distinct values of  $x \equiv \xi(L)/L$ , while we attempt to cover an entire interval of x. Moreover, we have used the method to obtain extrapolations to  $L = \infty$ at each fixed  $\beta$ . The method of Kim [6] is also closely related, but he compares lattice size L to  $\infty$  rather than to sL; this is a disadvantage. Nevertheless, Kim has obtained extremely accurate estimates of  $\xi_{\infty}(\beta)$  in the O(3)  $\sigma$  model; see Table II above. Similar ideas were used also by Flyvbjerg and Larsen [9] in the context of the 1/N expansion. It should be emphasized that all these methods are completely general; they are not restricted to asymptotically free theories. Also, all these methods work only with observable quantities ( $\xi$ ,  $\mathcal{O}$ , and L) and not with bare quantities  $(\beta)$ . Therefore, they rely only on "scaling" and not on "asymptotic scaling;" and they differ from other finite-size-scaling-based methods such as phenomenological renormalization.
- [9] H. Flyvbjerg and F. Larsen, Phys. Lett. B 266, 92, 99 (1991).
- [10] Here  $\xi^{(\exp)}$  is the exponential correlation length (the inverse mass gap), and  $\xi^{(2)}$  is the second-moment correlation length defined by (4.11)–(4.13) of Ref. [11]. Note that  $\xi^{(2)}$  is well defined in finite volume as well as in infinite volume; where necessary we write  $\xi^{(2)}(L)$  and  $\xi^{(2)}_{\infty}$ , respectively. In this paper,  $\xi$  without a superscript denotes  $\xi^{(2)}$ .
- [11] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal, Nucl. Phys. B403, 475 (1993).
- [12] M. Falcioni and A. Treves, Nucl. Phys. B265, 671 (1986); P. Weisz and M. Lüscher (unpublished), cited in [4].
- [13] S. Caracciolo and A. Pelissetto, Nucl. Phys. B420, 141 (1994).
- [14] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett. B 245, 522 (1990); P. Hasenfratz and F. Niedermayer, Phys. Lett. B 245, 529 (1990).
- [15] H. Flyvbjerg, Nucl. Phys. B348, 714 (1991); P. Biscari, M. Campostrini, and P. Rossi, Phys. Lett. B 242, 225 (1990); S. Caracciolo and A. Pelissetto (to be published).
- [16] Steffen Meyer (private communication) has kindly supplied us with a high-precision Monte Carlo estimate of the universal ratio  $C_{\xi^{(2)}}/C_{\xi^{(\exp)}}$  in the N = 3 model: it is 0.9994  $\pm$  0.0008 at  $\beta = 1.7$  ( $\xi_{\infty} \approx 35$ ), L = 256; and 0.9991  $\pm$  0.0009 at  $\beta = 1.8$  ( $\xi_{\infty} \approx 65$ ), L = 512. This is in excellent agreement with the value 0.9989 obtained from the 1/N expansion, and is only marginally different from 1.
- [17] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
- [18] R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).
- [19] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal (to be published).
- [20] G. Martinelli, G. Parisi, and R. Petronzio, Phys. Lett.
  100B, 485 (1981); S. Samuel, O. Martin, and K. Moriarty, Phys. Lett. 153B, 87 (1985); G.P. Lepage and P.B. Mackenzie, Phys. Rev. D 48, 2250 (1993).
- [21] M. Lüscher (unpublished), cited in [4].

<sup>&</sup>lt;sup>†</sup>Electronic address: EDWARDS@SCRI.FSU.EDU <sup>‡</sup>Electronic address: PELISSET@SUNTHPI1.DIFI. UNIPI.IT