Asymptotic Scaling in the Two-Dimensional O(3) σ Model at Correlation Length 10⁵

Sergio Caracciolo, ^{1,*} Robert G. Edwards, ^{2,†} Andrea Pelissetto, ^{3,‡} and Alan D. Sokal^{4,¶}

 1 Dipartimento di Fisica, Università di Lecce and INFN–Sezione di Lecce, I-73100 Lecce, Italy

²Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306

 3 Dipartimento di Fisica and INFN–Sezione di Pisa, Università degli Studi di-Pisa, I-56100 Pisa, Italy

⁴Department of Physics, New York University, 4 Washington Place, New York, New York 10003

(Received 10 November 1994)

We carry out a high-precision Monte Carlo simulation of the two-dimensional $O(3)$ -invariant σ model at correlation lengths ξ up to $\sim 10^5$. Our work employs a powerful method for extrapolating finitevolume Monte Carlo data to infinite volume, based on finite-size-scaling theory. We discuss carefully the systematic and statistical errors in this extrapolation. We then compare the extrapolated data to the renormalization-group predictions. The deviation from asymptotic scaling, which is $\approx 25\%$ at $\xi \sim 10^2$, decreases to $\approx 4\%$ at $\xi \sim 10^5$.

PACS numbers: 11.10.Hi, 05.70.Jk, 11.10.Jj, 11.15.Ha

Two-dimensional nonlinear σ models are important "toy models" in elementary-particle physics because they share with four-dimensional non-Abelian gauge theories the property of perturbative asymptotic freedom [1]. However, the nonperturbative validity of asymptotic freedom has been questioned [2], and numerical tests of asymptotic scaling in the O(3) σ model at correlation length $\xi \sim 100$ have shown discrepancies of order 25% [3,4]. In this Letter we employ a finite-size-scaling extrapolation method due originally to Liischer, Weisz, and Wolff [5—8] to obtain high-precision estimates (errors $\leq 2\%$) in the O(3) σ . model at correlation lengths ξ up to $\sim 10^5$. We find that the discrepancy has decreased to \approx 4%, in good agreement with the asymptotic-freedom predictions.

We study the lattice σ model taking values in the unit sphere $S^{N-1} \subset \mathbb{R}^N$, with nearest-neighbor action $\mathcal{H}(\boldsymbol{\sigma}) = -\beta \sum \boldsymbol{\sigma}_x \cdot \boldsymbol{\sigma}_y$. Perturbative renormalizationgroup computations predict that the (infinite-volume)

correlation lengths
$$
\xi^{(exp)}
$$
 and $\xi^{(2)}$ [10] behave as
\n
$$
\xi^{\#}(\beta) = C_{\xi^{\#}} e^{2\pi \beta/(N-2)} \left(\frac{2\pi \beta}{N-2}\right)^{-1/(N-2)}
$$
\n
$$
\times \left[1 + \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \cdots\right]
$$
\n(1)

as $\beta \rightarrow \infty$. Three-loop perturbation theory yields [12,13]

$$
a_1 = -0.014127 + (\frac{1}{4} - 5\pi/48)/(N - 2). \quad (2)
$$

The nonperturbative constant $C_{\xi^{(exp)}}$ has been computed recently using the thermodynamic Bethe ansatz [14]:

$$
C_{\xi^{(\exp)}} = 2^{-5/2} \left(\frac{e^{1-\pi/2}}{8} \right)^{1/(N-2)} \Gamma \left(1 + \frac{1}{N-2} \right). \quad (3)
$$

The remaining nonperturbative constant is known analytically only at large N [15]:

$$
C_{\xi^{(2)}}/C_{\xi^{(exp)}} = 1 - 0.003\,225/N + O(1/N^2). \tag{4}
$$

Previous Monte Carlo studies up to $\xi \sim 100$ agree with these predictions to within about $(20-25)\%$ for $N = 3$, 6% for $N = 4$, and 2% for $N = 8$ [4,16].

$$
0031-9007/95/75(10)/1891(4)\$06.00
$$

The extrapolation method [7] is based on the finite-sizescaling ansatz

$$
\frac{\mathcal{D}(\beta, sL)}{\mathcal{O}(\beta, L)} = F_{\mathcal{O}}(\xi(\beta, L)/L; s) + O(\xi^{-\omega}, L^{-\omega}), \quad (5)
$$

where $\mathcal O$ is any long-distance observable, s is a fixed scale factor (usually $s = 2$), L is the linear lattice size, $F_{\mathcal{O}}$ is a universal function, and ω is a correction-to-scaling exponent. We make Monte Carlo runs at numerous pairs (β, L) and (β, sL) ; we then plot $\mathcal{O}(\beta, sL)/\mathcal{O}(\beta, L)$ vs $\xi(\beta, L)/L$, using those points satisfying both $\xi(\beta, L) \ge$ some value ξ_{\min} and $L \ge$ some value L_{\min} . If all these points fall with good accuracy on a single curve, we choose a smooth fitting function $F_{\mathcal{O}}$. Then, using the functions F_{ξ} and $F_{\mathcal{O}}$, we extrapolate the pair (ξ, \mathcal{O}) successively from $L \to sL \to s^2L \to \cdots \to \infty$. See [7] for how to calculate statistical error bars on the extrapolated values.

We have chosen to use functions $F_{\mathcal{O}}$ of the form

$$
F_{\mathcal{O}}(x) = 1 + a_1 e^{-1/x} + \dots + a_n e^{-n/x}.
$$
 (6)

Typically a fit of order $3 \le n \le 12$ is sufficient; we increase *n* until the χ^2 of the fit becomes essentially constant. The resulting χ^2 value provides a check on the systematic errors arising from corrections to scaling and/or from inadequacies of the form (6). The discrepancies between the extrapolated values from different L at the same β can also be subjected to a χ^2 test. Further details on the method can be found in [7].

We simulated the two-dimensional $O(3)$ σ model, using the Wolff embedding algorithm with standard Swendsen-Wang updates [11,17,18]; critical slowing down appears to be completely eliminated. We ran on lattices $L = 32$, 48, 64, 96, 128, 192, 256, 384, 512 at 180 different pairs (β, λ) in the range $1.65 \leq \beta \leq 3.00$ (corresponding to β , L) in the range 1.65 $\geq \beta \leq 3.00$ (corresponding to $20 \leq \xi_{\infty} \leq 10^5$). Each run was between 10^5 and 5×10^6 iterations, and the total CPU time was 7 yr on an IBM RS-6000/370. The raw data will appear in [19].

Our data cover the range $0.15 \le \xi(L)/L \le 1.0$, and we found tentatively that a tenth-order fit (6) is indicated; see Table I. Next we took $\xi_{\min} = 20$ and sought to

 $(95/75(10)/1891(4)\$06.00$ © 1995 The American Physical Society 1891

TABLE I. χ^2 and confidence level for the fit (6) of $\xi(\beta, 2L)/\xi(\beta, L)$ vs $\xi(\beta, L)/L$. DF is the number of degrees of freedom. The first (second) L_{min} value applies for $\xi(L)/L \leq 0.7$ (>0.7). In all cases $\xi_{\text{min}} = 20$.

L_{\min}	DF	$n = 7$	$n = 8$	$n = 9$	$n = 10$	$n = 11$	$n = 12$
(64, 64)	$108 - n$	278.38	183.80	144.34	137.82	135.77	135.01
		0.0%	0.0%	0.2%	0.5%	0.6%	0.5%
(96,32)	$107 - n$	228.85	164.46	120.38	124.87	122.15	120.48
		0.0%	0.0%	1.9%	3.0%	3.7%	4.0%
(96, 64)	$97 - n$	207.32	137.18	108.23	103.13	102.02	101.59
		0.0%	0.1%	7.1%	11.4%	11.5%	10.6%
(96, 96)	$87 - n$	190.61	115.05	100.99	93.90	93.89	93.73
		0.0%	0.5%	4.1%	9.2%	8.0%	7.1%
(128, 32)	$93 - n$	160.17	121.29	99.35	94.82	94.20	86.65
		0.0%	0.6%	12.1%	17.7%	16.8%	31.3%
(128, 64)	$83 - n$	139.60	95.94	78.23	72.91	72.89	68.43
		0.0%	5.2%	34.6%	48.1%	44.9%	56.4%
(128,96)	$73 - n$	126.20	79.03	71.12	64.33	63.29	59.72
		0.0%	11.3%	25.3%	43.0%	43.1%	52.2%
(128, 128)	$64 - n$	101.05	63.45	61.96	59.70	59.28	52.89
		0.0%	23.1%	24.2%	27.6%	25.7%	43.9%
(192, 32)	$75 - n$	110.42	93.41	76.13	70.61	65.15	62.16
		0.1%	1.8%	18.5%	29.6%	43.6%	50.6%
(192, 64)	$65 - n$	90.60	69.57	55.03	47.60	45.12	43.74
		0.4%	12.3%	51.1%	75.0%	80.0%	81.4%
(192,96)	$57 - n$	82.54	55.94	49.49	38.90	38.67	37.53
		0.3%	23.0%	41.4%	79.4%	77.0%	77.8%

choose L_{min} to avoid any detectable systematic error from corrections to scaling. There appear to be weak corrections to scaling $(\leq 1.5\%)$ in the region $0.3 \leq$ $\xi(L)/L \leq 0.7$ for lattices with $L \leq 64-96$; see the deviations plotted in Fig. 1. We therefore investigated systematically the χ^2 of the fits, allowing a different L_{min} for $\xi(L)/L \leq 0.7$ and > 0.7 ; see Table I. A reasonable $g'(E)/E = 0.7$ and >0.7 , see Table 1. A reasonable
 χ^2 is obtained when $n \ge 9$ and $L_{\text{min}} \ge (128, 64)$. Our preferred fit is $n = 10$ and $L_{\text{min}} = (128, 64)$; see Fig. 2,

FIG. 1. Deviation of points from fit to F_{ξ} with $s = 2$, $\xi_{\min} = 20$, $L_{\min} = 128$, and $n = 10$. Symbols indicate $L = 32 (+)$, 48 (\div), 64 (\times), 96 (\times), 128 (\square), 192 (\times), and 256 (\diamond). Error bars are ¹ standard deviation. Curves near zero indicate statistical error bars (± 1) standard deviation) on the function $F_{\xi}(x)$.

where we compare also with the perturbative prediction

$$
F_{\xi}(x; s) = s \left[1 - \frac{aw_0 \ln s}{2} x^{-2} - a^2 \left(\frac{w_1 \ln s}{2} + \frac{w_0^2 \ln^2 s}{8} \right) x^{-4} + O(x^{-6}) \right] (7)
$$

valid for $x \gg 1$, where $a = 1/(N - 1)$, $w_0 = (N 2)/2\pi$, and $w_1 = (N - 2)/(2\pi)^2$.

FIG. 2. $\xi(\beta, 2L)/\xi(\beta, L)$ vs $\xi(\beta, L)/L$. Symbols indicate. $L = 32 (+)$, 48 (+), 64 (\times), 96 (\times), 128 (\square), 192 (\times), and 256 (\diamond). Error bars are 1 standard deviation. Solid curve is tenth-order fit in (6), with $\xi_{\text{min}} = 20$ and $L_{\text{min}} = 128$ (64) for $\xi(L)/L \leq 0.7$ (>0.7). Dashed curve is the perturbative prediction (7).

The extrapolated values $\xi_{\infty}^{(2)}$ from different lattice sizes at the same β are consistent within statistical errors: only one of the 24 β values has a χ^2 too large at the 5% level, and summing all β values we have $\chi^2 = 86.56$ (106 degrees of freedom, level = 92%).

In Table II we show the extrapolated values $\xi^{(2)}_{\infty}$ from our preferred fit and some alternative fits. The discrepancies between these values (if larger than the statistical errors) can serve as a rough estimate of the remaining systematic errors due to corrections to scaling. The statistical errors in our preferred fit are of order 0.2% (0.7%, 1.1%, 1.6%) at $\xi_{\infty} \approx 10^2$ (10³, 10⁴, 10⁵), and the systematic errors are of the same order or smaller. The statistical errors at different β are strongly positively correlated.

In Fig. 3 (points + and \times) we plot $\xi_{\infty, \text{estimate}(128, 64)}^{(2)}$ divided by the two-loop and three-loop predictions (1) -(4). The discrepancy from three-loop asymptotic scaling, which is \approx 16% at $\beta = 2.0$ ($\xi \approx$ 200), decreases to \approx 4% at $\beta = 3.0$ ($\xi \approx 10^5$). This is roughly consistent with the expected $1/\beta^2$ corrections. The slight bump at $2.3 \leq$ $\beta \le 2.6$ is probably spurious, arising from correlated β statistical or systematic errors.

We can also try an "improved expansion parameter" [4,13,19,20] based on the energy $E = \langle \mathbf{\sigma}_0 \cdot \mathbf{\sigma}_1 \rangle$. First we invert the perturbative expansion [13,21]

$$
E(\beta) = 1 - \frac{N-1}{4\beta} - \frac{N-1}{32\beta^2} - \frac{0.005993(N-1)^2 + 0.007270(N-1)}{\beta^3} + O(1/\beta^4)
$$
(8)

FIG. 3. $\xi_{\infty, \text{estimate}(128, 64)}^{(2)}/\xi_{\infty, \text{theor}}^{(2)}$ vs β . Error bars are 1 standard deviation (statistical error only). There are four versions FIG. 3. $\xi_{\infty, \text{estimate}(128, 64)}^{(2)} / \xi_{\infty, \text{theor}}^{(2)}$ vs β . Error bars are 1 standard deviation (statistical error only). There are four versions of $\xi_{\infty, \text{theor}}^{(2)}$: standard perturbation theory in $1/\beta$ gives point of $\xi_{\infty,\text{theor}}^{(2)}$ standard perturbation theory in $1/\beta$ gives points $+$ (2-loop) and \times (3-loop); "improved" perturbation theory in $1 - E$ gives points \Box (2-loop) and \Diamond (3-loop).

and substitute into (1); this gives a prediction for ξ as a function of $1 - E$. For E we use the value measured on the largest lattice; the statistical errors and finite-size corrections on E are less than 5×10^{-5} , and therefore induce a negligible error (less than 0.5%) on the predicted ξ . The corresponding observed/predicted ratios are also shown in Fig. 3 (points \Box and \diamond). The "improved" 3loop prediction is in excellent agreement with the data.

TABLE II. Estimated correlation lengths $\xi_{\infty}^{(2)}$ as a function of β , from various extrapolations. Error bar is 1 standard deviation (statistical errors only). All extrapolations use $s = 2$, $\xi_{\min} = 20$, and $n = 1$ guaranteering errors only). All extrapolations use $s = 2$, $\xi_{\text{min}} = 20$, and $n = 10$. The first (second) L_{min} value $\xi(L)/L \le 0.7$ (>0.7). Our preferred fit is $L_{\text{min}} = (128, 64)$, shown in italics. Kim is the estim

$L_{\rm min}$	1.90	1.95	2.00	2.05	2.10	2.15	2.20	2.25
(96, 64)	122.43(0.25)	166.79(0.36)	228.37 (0.55)	311.54 (0.93)	420.52 (1.59)	574.16 (2.51)	774.24 (3.69)	1039.1(5.7)
(96, 96)	122.55(0.25)	166.95(0.37)	228.93 (0.57)	312.29 (0.93)	421.61 (1.63)	574.96 (2.51)	776.03 (3.73)	1038.2(5.5)
(128, 32)	122.34 (0.29)	166.68(0.42)	228.50 (0.66)	311.84 (1.09)	422.67 (1.94)	577.41 (3.13)	779.33 (4.80)	1048.9(7.3)
(128, 64)	122.34(0.29)	166.66(0.43)	228.54 (0.67)	311.99 (1.10)	422.73 (1.97)	577.73 (3.12)	780.04 (4.76)	1048.7(7.3)
(128,96)	122.25 (0.29)	166.54(0.43)	228.11 (0.66)	311.59 (1.10)	421.71 (1.90)	576.52 (3.06)	778.40 (4.58)	1045.9(7.3)
(128, 128)	122.36 (0.29)	166.68 (0.43)	228.59 (0.69)	312.06 (1.13)	422.89 (2.00)	577.94 (3.09)	781.23 (4.79)	1046.7(7.3)
(192, 32)	122.40 (0.40)	166.95(0.60)	229.05 (0.93)	312.94 (1.49)	424.90 (2.69)	580.40 (4.39)	784.04 (7.14)	1057.7(11.4)
(192, 64)	122.41 (0.38)	166.94(0.57)	229.15 (0.90)	312.86 (1.44)	425.42 (2.62)	580.91 (4.41)	785.39 (7.11)	1057.3(11.2)
(192,96)	122.43 (0.39)	167.02 (0.58)	229.30 (0.90)	313.23 (1.45)	426.08 (2.70)	581.91 (4.44)	787.63 (7.18)	1057.9(11.2)
Kim	122.0(2.7)		227.8 (3.2)	306.6(3.9)	419(5)	574 (8)	766 (7)	
$L_{\rm min}$	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00
(96, 64)	1403.4(8.3)	2539.1 (17.9)	4619.7 (38.6)	8460.1 (81.7)	15499 (172)	28413 (362)	51624 (746)	93601 (1475)
(96, 96)	1402.0(8.4)	2541.5 (19.2)	4605.9 (44.5)	8450.7 (101.2)	15401 (218)	28119 (455)	51356 (934)	93641 (1923)
(128, 32)	1416.7 (10.6)	2566.2 (20.8)	4687.7 (41.3)	8559.0 (81.1)	15594 (161)	28622 (322)	51955 (651)	94133 (1345)
(128, 64)	1416.8 (10.5)	2568.8 (21.2)	4671.7 (43.9)	8569.0 (91.6)	15690 (189)	28737 (389)	52189 (779)	94643 (1554)
(128,96)	1414.1 (10.8)	2558.1 (22.8)	4628.6 (48.4)	8478.0 (104.3)	15507 (226)	28360 (470)	51695 (961)	94033 (1930)
(128, 128)	1415.5 (11.2)	2572.1 (26.2)	4637.7 (62.0)	8437.2 (143.2)	15336 (311)	27947 (666)	51319 (1392)	94627 (2922)
(192, 32)	1425.3 (17.0)	2584.4 (32.8)	4716.9 (62.6)	8622.7 (118.4)	15638 (225)	28820 (432)	52345 (843)	94724 (1660)
(192, 64)	1427.6 (17.0)	2582.2 (32.9)	4702.7 (62.7)	8625.0 (123.1)	15802 (244)	28952 (482)	52502 (934)	95266 (1819)
(192,96)	1427.0 (17.0)	2584.2 (33.4)	4688.2 (65.4)	8599.8 (133.7)	15660 (269)	28663 (542)	52314 (1082)	95304 (2163)
Kim	1402 (22)	2499 (41)	4696 (128)	8022 (234)	15209 (449)			

Let us summarize the conceptual basis of our analysis. The main assumption is that if the ansatz (5) with a given function F_{ξ} is well satisfied by our data for $L_{\min} \leq$ $L \le 256$ and $1.65 \le \beta \le 3$, then it will continue to
be well satisfied for $L > 256$ and $\beta > 3$. Obviously this assumption could fail, e.g., if [2] at some large correlation length $(\geq 10^3)$ the model crosses over to a new universality class associated with a finite- β critical point. In this respect our work is subject to the same caveats as any other Monte Carlo work on a finite lattice. However, it should be emphasized that our approach does not assume asymptotic scaling [Eq. (1)], as β plays no role in our extrapolation method. Thus, we can make an unbiased test of asymptotic scaling. The good agreement of our data at large x with the perturbative prediction (7) guarantees that our extrapolated values $\xi_{\infty}(\beta)$ will scale roughly as in (1), but it does not determine the constant C_{ξ} . The fact that we confirm (1) with the correct nonperturbative constant $(3)/(4)$ is, we believe, good evidence in favor of the asymptotic-freedom picture.

Details of this work, including an analysis of the susceptibility χ , will appear elsewhere [19].

We wish to thank Jae-Kwon Kim for sharing his data with us, and for challenging us to push to ever larger values of ξ/L . We also thank Henrik Flyvbjerg, Steffen Meyer, Adrian Patrascioiu, Erhard Seiler, and Ulli Wolff for helpful discussions. The authors' research was supported by CNR, INFN, DOE Contracts No. DE-FG05- 85ER250000 and No. DE-FG05-92ER40742, NSF Grant No. DMS-9200719, and NATO CRG 910251.

[¶]Electronic address: SOKAL@NYU.EDU

- [1] A. M. Polyakov, Phys. Lett. 59B, 79 (1975); E. Brézin and J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976); W. A. Bardeen, B.W. Lee, and R. E. Shrock, Phys. Rev. D 14, 985 (1976); J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979), Sec. VIII. C.
- [2] A. Patrascioiu and E. Seiler, Max-Planck-Institut Report No. MPI-Ph/91-88 (1991); Nucl. Phys. B (Proc. Suppl.) 30, 184 (1993).
- [3] U. Wolff, Nucl. Phys. **B334**, 581 (1990); P. Hasenfratz and F. Niedermayer, Nucl. Phys. 8337, 233 (1990); J. Apostolakis, C.F. Baillie, and G.C. Fox, Phys. Rev. D 43, 2687 (1991).
- [4] U. Wolff, Phys. Lett. 2488, 335 (1990); Nucl. Phys. B (Proc. Suppl.) 20, 682 (1991).
- [5] M. Lüscher, P. Weisz, and U. Wolff, Nucl. Phys. **B359**, 221 (1991).
- [6] (a) J.-K. Kim, Phys. Rev. Lett. **70**, 1735 (1993); (b) Nucl. Phys. B (Proc. Suppl.) 34, 702 (1994); (c) Phys. Rev. D 50, 4663 (1994); (d) Europhys. Lett. 28, 211 (1994); (e) Phys. Lett. 3458, 469 (1995).
- [7] S. Caracciolo, R. G. Edwards, S.J. Ferreira, A. Pelissetto, and A. D. Sokal, Phys. Rev. Lett. 74, 2969 (1995).
- 8] Our method [7] is essentially identical to that of Lüscher, Weisz, and Wolff [5]. The principal difference is that Lüscher *et al.* choose carefully their runs (β, L) so as to produce only a few distinct values of $x = \xi(L)/L$, while we attempt to cover an entire interval of x . Moreover, we have used the method to obtain extrapolations to $L = \infty$ at each fixed β . The method of Kim [6] is also closely related, but he compares lattice size L to ∞ rather than to sL ; this is a disadvantage. Nevertheless, Kim has obtained extremely accurate estimates of $\xi_{\infty}(\beta)$ in the O(3) σ model; see Table II above. Similar ideas were used also by Flyvbjerg and Larsen [9] in the context of the $1/N$ expansion. It should be emphasized that all these methods are completely general; they are not restricted to asymptotically free theories. Also, all these methods work only with observable quantities $(\xi, \mathcal{O}, \text{ and } L)$ and not with bare quantities (β) . Therefore, they rely only on "scaling" and not on "asymptotic scaling;" and they differ from other finite-size-scaling-based methods such as phenomenological renormalization.
- [9] H. Flyvbjerg and F. Larsen, Phys. Lett. B 266, 92, 99 (1991).
- 10] Here $\xi^{(exp)}$ is the exponential correlation length (the inverse mass gap), and $\xi^{(2)}$ is the second-moment correlation length defined by (4.11) – (4.13) of Ref. [11]. Note hat $\xi^{(2)}$ is well defined in finite volume as well as in ininite volume; where necessary we write $\xi^{(2)}(L)$ and $\xi^{(2)}_{\infty}$, respectively. In this paper, ξ without a superscript denotes $\xi^{(2)}$.
- [11] S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Nucl. Phys. 8403, 475 (1993).
- [12] M. Falcioni and A. Treves, Nucl. Phys. B265, 671 (1986); P. Weisz and M. Liischer (unpublished), cited in [4].
- 13] S. Caracciolo and A. Pelissetto, Nucl. Phys. B420, 141 (1994).
- 14] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett. B 245, 522 (1990); P. Hasenfratz and F. Niedermayer, Phys. Lett. B 245, 529 (1990).
- 15] H. Flyvbjerg, Nucl. Phys. **B348**, 714 (1991); P. Biscari, M. Campostrini, and P. Rossi, Phys. Lett. B 242, 225 (1990); S. Caracciolo and A. Pelissetto (to be published).
- 16] Steffen Meyer (private communication) has kindly supplied us with a high-precision Monte Carlo estimate of the universal ratio $C_{\xi^{(2)}}/C_{\xi^{(exp)}}$ in the $N = 3$ model: it is 0.9994 \pm 0.0008 at β = 1.7 ($\xi_{\infty} \approx$ 35), $L = 256$; and 0.9991 \pm 0.0009 at β = 1.8 ($\xi_{\infty} \approx 65$), $L = 512$. This is in excellent agreement with the value 0.9989 obtained from the $1/N$ expansion, and is only marginally different from 1.
- 17] U. Wolff, Phys. Rev. Lett. **62**, 361 (1989).
- 18] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).
- [19] S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal (to be published).
- [20] G. Martinelli, G. Parisi, and R. Petronzio, Phys. Lett. 100B, 485 (1981); S. Samuel, O. Martin, and K. Moriarty, Phys. Lett. 1538, 87 (1985); G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993).
- [21] M. Luscher (unpublished), cited in [4].

[~]Electronic address: CARRACCIO@LE. INFN. IT 'Electronic address: EDWARDS@SCRI.FSU.EDU ~Electronic address: PELISSET@SUNTHPI1.DIFI. UNIPI.IT