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We carry out a high-precision Monte Carlo simulation of the two-dimensional O(3)-invariant o. model
at correlation lengths g up to —10'. Our work employs a powerful method for extrapolating finite-
volume Monte Carlo data to infinite volume, based on finite-size-scaling theory. We discuss carefully
the systematic and statistical errors in this extrapolation. We then compare the extrapolated data to the
renormalization-group predictions. The deviation from asymptotic scaling, which is =25% at $ —10,
decreases to =4% at g —10s.
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as P ~ ~. Three-loop perturbation theory yields [12,13]

a( = —0.014127 + (&
—57r/48)/(N —2) . (2)

The Ilonperturbativc constant. Cg«xp) has bccn computed
recently using the thermodynamic Bethe ansatz [14]:
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The remaining nonperturbative constant is known analyti-
cally only at large N [15]:

Cg(2)/Cg(e~p) = 1 —0.003225/N + O(1/N ) . (4)

Previous Monte Carlo studies up to g —100 agree with
these predictions to within about (20—25)% for N = 3,
6% for N = 4, and 2% for N = 8 [4,16].

PACS numbers: 1 1.10.Hi, 05.70.Jk, 11.10.3j, 11.15.Ha

Two-dimensional nonlinear cr models are important
"toy models" in elementary-particle physics because they
share with four-dimensional non-Abelian gauge theories
the property of perturbative asymptotic freedom [1]. How-
ever, the nonperturbative validity of asymptotic freedom
has been questioned [2], and numerical tests of asymptotic
scaling in the O(3) o. model at correlation length g —100
have shown discrepancies of order 25% [3,4]. In this Let-
ter we employ a finite-size-scaling extrapolation method
due originally to Liischer, Weisz, and Wolff [5—8] to ob-
tain high-precision estimates (errors ~2%) in the O(3) o.
model at correlation lengths s up to —10'. We find that
the discrepancy has decreased to =4%, in good agreement
with the asymptotic-freedom predictions.

We study the lattice o. model taking values in the
unit sphere 5 ' C IR, with nearest-neighbor action
A(a) = —P pa; . crY. Perturbative renormalization-
group computations predict that the (infinite-volume)
correlation lengths g "~) and $( [10] behave as

—&/(& —2)

hatt(P) C 27r/3/(N 2) t—
N —2

The extrapolation method [7] is based on the finite-size-
scaling ansatz

6(P, sL) = F~(e(/3, L)/L;s) + o(e--, L- ), (5)
P, L

where 6 is any long-distance observable, s is a fixed scale
factor (usually s = 2), L is the linear lattice size, Fg
is a universal function, and co is a correction-to-scaling
exponent. We make Monte Carlo runs at numerous pairs
(P, L) and (P, sL); we then plot 6(P, sL)/6(P, L) vs

s (P, L)/L, using those points satisfying both $(P, L) ~
some value g,„and L ~ some value L;„. If all these
points fall with good accuracy on a single curve, we choose
a smooth fitting function Fg. Then, using the functions Fg
and Fg, we extrapolate the pair (s, 6) successively from
L ~ sL ~ s L ~ . ~ ~. See [7] for how to calculate
statistical error bars on the extrapolated values.

We have chosen to use functions Fg of the form

Fg(x) = 1 + aie '/' + . . + a„e (6)

Typically a fit of order 3 ~ n ~ 12 is sufficient; we
increase n until the g of the fit becomes essentially
constant. The resulting g value provides a check on
the systematic errors arising from corrections to scaling
and/or from inadequacies of the form (6). The discrepan-
cies between the extrapolated values from different I at
the same P can also be subjected to a g test. Further de-
tails on the method can be found in [7].

We simulated the two-dimensional O(3) o. model, using
the Wolff embedding algorithm with standard Swendsen-
Wang updates [11,17,18]; critical slowing down appears
to be completely eliminated. We ran on lattices L = 32,
48, 64, 96, 128, 192, 256, 384, 512 at 180 different pairs
(P, L) in the range 1.65 ~ P ~ 3.00 (corresponding to
20 s s ~ 105). Each run was between 105 and 5 X 106
iterations, and the total CPU time was 7 yr on an IBM RS-
6000/370. The raw data will appear in [19].

Our data cover the range 0.15 ~ g(L)/L ~ 1.0, and
we found tentatively that a tenth-order fit (6) is indicated;
see Table I. Next we took s;„=20 and sought to
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TABLE I. ~ and confidence level for the fit (6) of $(P, 2L)/g(P, L) vs g(P, L)/L D. F is the number of degrees of freedom.
The first (second) L;„value applies for g(L)/L ~ 0.7 i)0.7). In all cases $;„=20.

Lmin

(64,64)

(96,32)

(96,64)

(96,96)

(128,32)

(128,64)

(128,96)

(128,128)

(192,32)

(192,64)

(192,96)

DF

108 —n

107 —n

97 —n

87 —n

83 —n

73 ft

64 —n

75 —n

65 —n

57 —n

fl = 7

278.38
0.0%

228.85
0.0%

207.32
0.0%

190.61
0.0%

160.17
0.0%

139.60
0.0%

126.20
0.0%

101.05
0.0%

110.42
0.1%

90.60
0.4%

82.54
0.3%

n=8
183.80

0.0%
164.46

0.0%
137.18

0.1%
115.05

0.5%
121.29

0.6%
95.94
5.2%

79.03
11.3%
63.45
23.1 /o

93.41
1.8%

69.57
12.3%
55.94
23.0%

n=9
144.34

0.2%
120.38

1.9%
108.23

7.1%
100.99

4. 1%
99.35
12.1%
78.23
34.6%
71.12
25.3%
61.96
24.2%
76.13
18.5%
55.03
51.1%
49.49
41.4%

n= 10

137.82
0.5%

124.87
3.0%

103.13
11.4%
93.90
9.2%

94.82
17.7%
72.91
48.1%
64.33
43.0%
59.70
27.6%
70.61
29.6%
47.60
75.0%
38.90
79.4%

n =11
135.77

0.6%
122.15

3.7%
102.02
11.5%
93.89

8.0%
94.20
16.8%
72.89
44.9%
63.29
43.1%
59.28
25.7%
65.15
43.6%
45.12
80.0%
38.67
77.0%

n=12
135,01

0.5%
120.48

4.0%
101.59

10.6%
93.73

7.1%
86.65
31.3~/c

68.43
56.4%
59.72
52 2%
52.89
43 9%
62. 16
50 6%
43.74
81.4%
37.53
77.8%

choose L;„ to avoid any detectable systematic error
from corrections to scaling. There appear to be weak
corrections to scaling (~1.5%) in the region 0.3 ~
$(L)/L ~ 0.7 for lattices with L ~ 64 —96; see the
deviations plotted in Fig. 1. We therefore investigated
systematically the ~ of the fits, allowing a different L;„
for g(L)/L ~ 0.7 and )0.7; see Table I. A reasonable
g2 is obtained when n ~ 9 and L;„~ (128, 64). Our
preferred fit is n = 10 and L;„=(128, 64); see Fig. 2,

where we compare also with the perturbative prediction

amp lns
Fg(x;s) =s 1—

2
X

~11ns wp ln s 4
2 2—.

( +
2 8

x + O(x ) (7)

valid for x» 1, where a = 1/(N —1), wq = (N—
2)/27r, and wt = (N —2)/(2~)2.
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FIG. 1. Deviation of points from fit to Fr with s = 2, s
20, L;„=128, and n = 10. Symbols indicate L = 32 (+),
48 (+), 64 (X), 96 (X), 128 ( ), 192 (N), and 256 (O).
Error bars are 1 standard deviation. Curves near zero indicate
statistical error bars i+ 1 standard deviation) on the function
Fg (x).

FIG. 2. s (P, 2L)/g(P, L) vs $(P, L)/L Symbols indicate.
L = 32 (+), 48 (+), 64 (X), 96 (X), 128 ( ), 192 ():(), and
256 (0). Error bars are I standard deviation. Solid curve
is tenth-order fit in (6), with s&:~,„=20 and L;„= 128 (64)
for g(L)/L ~ 0.7 ()0.7). Dashed curve is the perturbative
prediction (7).
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N —1 N —1

4P 32P2

0.005 993(N —1)2 + 0.007 270(N —1)
3

E(P) = 1—

+ O(1/P')

The extrapolated values s from different lattice sizes
at the same P are consistent within statistical errors: only
one of the 24 P values has a ~ too large at the 5%
level, and summing all P values we have y = 86.56
(106 degrees of freedom, level = 92%).

In Table II we show the extrapolated values s from
(2)

our preferred fit and some alternative fits. The discrep-
ancies between these values (if larger than the statistical
errors) can serve as a rough estimate of the remaining sys-
tematic errors due to corrections to scaling. The statistical
errors in our preferred fit are of order 0.2% (0.7%, 1.1%,
1.6%) at $ = 10 (10, 10, 10 ), and the systematic er-
rors are of the same order or smaller. The statistical errors
at different P are strongly positively correlated.

(2)
In Fig. 3 (points + and X) we plot g „„„,(t2s64)

divided by the two-loop and three-loop predictions (1)—
(4). The discrepancy from three-loop asymptotic scaling,
which is =16% at P = 2.0 (s = 200), decreases to =4%
at P = 3.0 (s = 10 ). This is roughly consistent with
the expected 1/P corrections. The slight bump at 2.3 ~
P ~ 2.6 is probably spurious, arising from correlated
statistical or systematic errors.

We can also try an "improved expansion parameter"
[4,13,19,20] based on the energy F = (ere o.&). First
we invert the perturbative expansion [13,21]

I I I I I I I I I

(~

0
A

8

CO

CQ
Cg

I
E

8

0 Q x

0.7 I I I I I I I I I

2.0 3.0

(2) (2)FIG. 3. g„ggtjmgte(f2sr4)/g thpof vs P. Error bars are 1 stan-
dard deviation (statistical error only). There are four versions
of $~ l: standard perturbation theory in I/P gives points~,theor
+ (2-loop) and X (3-loop); "improved" perturbation theory in
1 —E gives points (2-loop) and && (3-loop).

and substitute into (1); this gives a prediction for s as
a function of 1 —F. For F we use the value measured
on the largest lattice; the statistical errors and finite-size
corrections on E are less than 5 X 10, and therefore
induce a negligible error (less than 0.5%) on the predicted

The corresponding observed/predicted ratios are also
shown in Fig. 3 (points and 0). The "improved" 3-
loop prediction is in excellent agreement with the data.

TABLE II. Estimated correlation lengths g as a function of P, from various extrapolations. Error bar is 1 standard deviation(2)

(statistical errors only). All extrapolations use s = 2, s;„=20, and n = 10. The first (second) L;„value applies for
g(L)/L ~ 0.7 ()0.7). Our preferred fit is L;„=(128, 64), shown in italics. Kim is the estimate from Ref. [6(c)].

I-min

(96,64)
(96,96)

(128,32)
(128,64)
(128,96)

(128,128)
(192,32)
(192,64)
(192,96)

Kim

1.90

122.43 (0.25)
122.55 (0.25)
122.34 (0.29)
122.34 (0.29)
122.25 {0.29)
122.36 (0.29)
122.40 (0.40)
122.41 (0.38)
122.43 (0.39)

122.0 (2.7)

1.95

166.79 (0.36)
166.95 (0.37)
166.68 (0.42)
166.66 (0.43)
166.54 (0.43)
166.68 (0.43)
166.95 (0.60)
166.94 (0.57)
167.02 (0.58

2.00

228.37 (0.55)
228.93 (0.57)
228.50 (0.66)
228.54 (0.67)
228. 11 (0.66)
228.59 (0.69)
229.05 (0.93)
229.15 (0.90)
229.30 (0.90)

227.8 (3.2)

2.05

311.54 (0.93)
312.29 (0.93)
311.84 (1.09)
311.99 (1.10)
311.59 (1.10)
312.06 (1.13)
312.94 {1.49)
312.86 (1.44)
313.23 (1.45)
306.6 (3.9)

2.10

420.52 (1.59)
421.61 (1.63)
422.67 {1.94)
422. 73 (1.97)
421.71 (1.90)
422.89 (2.00)
424.90 (2.69)
425.42 (2.62)
426.08 (2.70)

419 (5)

2.15

574.16 (2.51)
574.96 (2.51)
577.41 (3.13)
577.73 (3.12)
576.52 (3.06)
577.94 (3.09)
580.40 (4.39)
580.91 (4.41)
581.91 (4.44)

574 (8)

2.20

774.24 (3.69)
776.03 (3.73)
779.33 (4.80)
780.04 (4.76)
778.40 (4.58)
781.23 (4.79)
784.04 (7.14)
785.39 (7.11)
787.63 (7.18)

766 (7)

2.25

1039.1 (5.7)
1038.2 (5.5)
1048.9 (7.3)
1048.7 (7.3)
1045.9 (7.3)
1046.7 (7.3)

1057.7 (11.4)
1057.3 (11.2)
1057.9 (11.2)

Lmin

(96,64)
(96,96)

(128,32)
(128,64)
(128,96)

(128,128)
(192,32)
(192,64)
(192,96)

Kim

2.30

1403.4 (8.3)
1402.0 (8.4)

1416.7 (10.6)
1416.8 (10.5)
1414.1 (10.8)
1415.5 (11.2)
1425.3 (17.0)
1427.6 (17.0)
1427.0 (17.0)

1402 (22)

2.40

2539.1 (17.9)
2541.5 (19.2)
2566.2 (20.8)
2568.8 (21.2)
2558. 1 (22.8)
2572. 1 (26.2)
2584.4 (32.8)
2582.2 (32.9)
2584.2 (33.4)

2499 (41)

2.50

4619.7 (38.6)
4605.9 (44.5)
4687.7 (41.3)
4671.7 (43.9)
4628.6 (48.4)
4637.7 (62.0)
4716.9 (62.6)
4702.7 (62.7)
4688.2 (65.4)

4696 (128)

2.60

8460. 1 (81.7)
8450.7 (101.2)
8559.0 (81.1)
8569.0 (91.6)
8478.0 (104.3)
8437.2 (143.2)
8622.7 (118.4)
8625.0 (123.1)
8599.8 (133.7)

8022 (234)

2.70

15499 (172)
15401 (218)
15594 (161)
15690 (189)
15507 (226)
15336 (311)
15638 (225)
15802 (244)
15660 (269)
15209 (449)

2.80

28413 (362)
28119 (455)
28622 (322)
28737 (389)
28360 (470)
27947 (666)
28820 (432)
28952 (482)
28663 (542)

2.90

51624 (746)
51356 (934)
51955 (651)
52189 (779)
51695 (961)
51319 (1392)
52345 (843)
52502 (934)

52314 (1082)

3.00

93601 (1475)
93641 (1923)
94133 (1345)
94643 (1554)
94033 {1930)
94627 (2922)
94724 (1660)
95266 (1819)
95304 (2163)
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Let us summarize the conceptual basis of our analysis.
The main assumption is that if the ansatz (5) with a
given function F~ is well satisfied by our data for L;„~
L ~ 256 and 1.65 ~ P ~ 3, then it will continue to
be well satisfied for L ) 256 and P ) 3. Obviously
this assumption could fail, e.g. , if [2] at some large
correlation length (~10 ) the model crosses over to a
new universality class associated with a finite-P critical
point. In this respect our work is subject to the same
caveats as any other Monte Carlo work on a finite lattice.
However, it should be emphasized that our approach does
not assume asymptotic scaling [Eq. (1)], as P plays no
role in our extrapolation method. Thus, we can make an
unbiased test of asymptotic scaling. The good agreement
of our data at large x with the perturbative prediction
(7) guarantees that our extrapolated values s (P) will
scale roughly as in (1), but it does not determine the
constant C~. The fact that we confirm (I) with the
correct nonperturbative constant (3)/(4) is, we believe,
good evidence in favor of the asymptotic-freedom picture.

Details of this work, including an analysis of the
susceptibility g, will appear elsewhere [19].
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