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Continuum Limit, Galilean Invariance, and Solitons in the Quantum Equivalent of the Noisy
Burgers Equation
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A continuum limit of the non-Hermitian spin-1/2 chain, conjectured recently to belong to the
universality class of the noisy Burgers or, equivalently, Kardar-Parisi-Zhang equation, is obtained and
analyzed. The Galilean invariance of the Burgers equation is explicitly realized in the operator algebra.
In the quasiclassical limit we find nonlinear soliton excitations exhibiting the cu ~ k' dispersion relation
with dynamical exponent z = 3/2.
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The Kardar-Parisi-Zhang (KPZ) equation plays an im-
portant role in modern nonequilibrium statistical mechan-
ics as a continuum description of growing interfaces [1,2].
In a comoving frame the equation of motion for the rela-
tive height variable h(x, t) has the form

dh/at = vV'h + (1/2)A(V'h)' + iI,

where v is an effective diffusion coefficient, A a cou-
pling constant characterizing the slope dependence
of the growth velocity, and rt(x, t) a white noise,
(rt(x, t)r1(x', t')) = 56(x —x')6(t —t'), representing
fluctuations either in the drive or in the environment.

The slope variable u = V'h satisfies the noisy Burgers
equation [3,4]

Bu/i)t —Au%'u = vV u + Vg. (2)

(u(xo, to)u(xo + x, to + t)) = x zt' ~)f(t/x'), (3)

The universality class represented by (1) and (2), besides
driven interface and irrotational fIuid dynamics, includes
such important models as a driven lattice gas [5], as
well as a directed polymer [6], smectic liquid crystals
[7], or a quantum particle [8] in a random environment.
These models serve as paradigms in the theories of
driven and disordered systems. An additional attraction
of the problem is its analytical tractability. A consistent,
although uncontrolled, perturbative renormalization group
How has been constructed up to the two-loop level
[4,9,10] and appears to give qualitatively correct results.
What emerges is a critical (massless) behavior, which at
and below two spatial dimensions is always governed by
a strong-coupling renormalization group fixed point. Two
basic scaling dimensions describe the long-wavelength
low-frequency behavior of the problem: (i) the roughness
exponent g characterizing the height correlations in (1)
and (ii) the dynamical exponent z. The velocity field u or,
equivalently, slope field Vh for the interface, has scaling
dimension 1 —g. The pair correlation function scales as

cNP(u, t) cpu 82u )
dx Au + v

2 lP(u, t)
6u Bx Bx2

BzP(u, t)
dx dx', 6(x —x')

xBx
(4)

corresponding to (2) for any value of A. This property
then implies s' = 1/2 (random walk behavior) and thus
z = 3/2.

The exact rational values of the scaling exponents
found in d = 1 + 1 bear a superficial resemblance to
the exponents encountered in two-dimensional classical
critical problems, equivalent to d = 1 + 1 relativistic
quantum field theories [11]. Note, however, that the value
z = 3/2 is manifestly nonrelativistic, making extensions
of the conformal field theory methods a highly nontrivial
task. We might, however, still expect to gain new
insight by studying the equivalent (1 + 1)-dimensional

where the scaling function f(x) ~ x z ' &)/' for large
values of its argument.

The case of one spatial and one time dimension, d =
1 + 1, is of particular interest. Although the perturba-
tive renormalization group Aows into the strong-coupling
regime, outside of its range of validity it was noticed in

[4] that both scaling dimensions follow explicitly from
two exact scaling relations. The first one follows from the
Galilean invariance of the original Burgers equation (gen-
eralized to A 4 —1), i.e., u(x, t) ~ u(x —Aunt, t) —uo,
leaving all averages unchanged. This property implies
that A is a structural constant of the symmetry group and
thus invariant under a renormalization group transforma-
tion. Comparing the scaling properties of the two terms
on the left hand side of (2), we then obtain the first scal-
ing relation z = 2 —g. The other scaling relation is par-
ticular to the case d = 1 + 1 and follows from the fact
that the simple Gaussian equal time stationary probability
distribution lnP(u) ~ —f u (x)dx satisfies the Fokker-
Planck equation for the probability distribution P(u, t),

0031-9007/95/75(10)/1883(4) $06.00 1995 The American Physical Society 1883



VOLUME 75, NUMBER 10 PHYSICAL REVIEW LETTERS 4 SEPTEMBER 1995

nonrelativistic quantum system by the methods developed
for one-dimensional spin chains [12,13].

Such a quantum spin chain approach has been proposed
in [14], and considered further in [15], on the basis of
the equivalence between the master equation describing
the evolution of a one-dimensional driven lattice gas or
the equivalent lattice interface growth model and the non-
Hermitian spin s = 1/2 Hamiltonian for N spins,

N

H = —P S» S»+) ——+ ie (S» X S»+i) . (5)
J= 1

4

The mapping is achieved by identifying the eigenvalues of
the z projections of the spins, SJ', with the slope variable

uj of the discrete interface model or the occupation
numbers in the lattice gas representation. The interface
dynamics is governed by two basic rates, r~ and r~,
corresponding to Ilipping up or down a kink (a pair
of neighboring interface segments with opposite slopes);
these Ilips map onto the spin exchange processes in (5).
The vector e is oriented along the z axis and absorbing the
mean rate rt + rt by rescaling time we have ~e ~

= e =
(rt —r~)/(rt + rt), measuring the strength of the drive.
For e = 0 up and down Hips are equally probable, and
we obtain the Heisenberg ferromagnet, whose spin-wave
dispersion relation yields the dynamical exponent z = 2,
corresponding to the noisy linear diffusion equation or
the Edwards-Wilkinson equation for interface dynamics
[1,15]. The asymmetric limit of only up or only down
Aips, e = ~ 1, has been solved exactly by the Bethe-
ansatz method [14], and the finite-size gap in the spectrum
has been shown to scale with the length of the chain to
the power 3/2, in agreement with z = 3/2 for the noisy
Burgers universality class.

In this Letter we obtain the continuum limit of the spin
chain (5) corresponding to the noisy Burgers universality
class. We show that properly defined this limit exhibits
Galilean symmetry as realized by the algebra of genera-
tors of the continuous global transformations. It is known
that in the Heisenberg ferromagnet [13], as well as in
other XYZ spin-1/2 chains [16], quasiclassical quantiza-
tion of the classical solutions of the continuum equations
of motion correctly reproduces the low-energy sector of
the Bethe-ansatz solution. Motivated by this fact we also
study the quasiclassical limit. We find that the classical
equations of motion have exact solitary wave solutions,
which after quantization form a branch of elementary ex-
citations with the cu ~ k dispersion relation.

As a guide to the proper continuum limit we make
use of the two exact relationships employed above in
the derivation of the scaling dimensions g and z. The
implementation of the second one is readily carried
out by noting that the stationary equal time probability
distribution of the Burgers equation maps onto the ground
state of the quantum problem. The ground state of
the Heisenberg ferromagnet ~0), for e = 0 is aligned

S,' = s —(1/2)(u, + q, ),
S' = p s'~' S' = u s'/'.

J J ' j J

(6)

The oscillator position and momentum operators pJ and

u» satisfy the commutator relation [p», ut. ] = i6»k and
correspond to the polar angle and the g component of the
spin, i.e., the action-angle representation of the Heisen-
berg spin [13]. In the continuum limit the field opera-
tors u(x) and p(x) absorb the scale factor a'», u(x) =
u»a 'i, and cp(x) = p»a ' and obey the canonical
commutation relation [p(x), u(x')j = i6(x —x'). Intro-
ducing the spin-wave stiffness J = (sa)'i, using periodic
boundary conditions, omitting constant terms, and rescal-
ing time by s'~ a, the Hamiltonian finally reads

J BBi + ieu; (7)
Bx

with maximum total spin sN and fully degenerate spin
direction. In the following we quantize along the x
direction, i.e. , (O~S» ~0) = s, (O~S» [0) = 0, and &OIS»'IO) =
0, corresponding to a horizontal interface with zero slope.
With this choice (cf. [14]) S» is completely disordered
and the correlation function (0~S» S» ~0) = s 6»» . In the
continuum limit 6»» /a ~ 6(x), where a is the lattice
spacing, implying the rescaling S'(x) —S»/a' ~ with

g = 1/2. This result is also obtained by noting that a
block spin S'(x) constructed from a random sequence of
S; = ~I/2 yields a spin amplitude of the order of the
square root of the block size. Finally, in the mapping of a
master equation onto an equivalent quantum Hamiltonian
the energy levels correspond to the relaxation rates. The
ground state maps onto the stationary distribution and
consequently has energy zero. It is easily seen that the
aligned ground state ~0) is also an eigenstate of H in (5)
with eigenvalue zero, owing to the cross product form of
the last term. Consequently, the ground state structure
and thus the scaling dimension of the spin density is not
changed in the presence of the drive.

The excitation spectrum, however, is altered, since we
expect the cu ~ k dispersion law of the Heisenberg fer-
romagnet to change to cu ~ k / in the presence of the
drive term. Clearly, the Galilean invariance which per-
mits the evaluation of the exponent z requires the con-
tinuum limit a ~ 0 to be taken, since discrete distances
cannot be mixed with continuous time.

With the ground state aligned in the x direction the
excitations above the ground state correspond to spin
fluctuations in the y and z directions. Noting that a block
spin pointing in the x direction has a size s —a ' for
a ~ 0, while the spins in the y and z directions scale as
a ', we infer that the continuum limit is equivalent to
the large spin limit in the block spin representation. Using
the quasiclassical harmonic oscillator representation for
the spin operators, see, e.g. , [12],we have
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Aced 6 u=iJ +
Bx

Bu = —iJ
Bt Bx2

2E'u
Bx
„Bu+ 2Eu

Bx

(8)

(9)

These field equations are invariant under the Galilean
transformation

u(x, t) u(x —2eupt, t) —up,

q (x, t) p(x —2eupt, t),

in addition to being invariant under an arbitrary shift in
These two continuous symmetry relations correspond

to the two generators of the full group of rotations of
the Heisenberg spin in (5) for e = 0. The oscillator
representation corresponds to a local Abelian limit of the
non-Abelian group O(3); the spin-wave Hamiltonian is
invariant under arbitrary shifts in both canonical fields

and u. In the presence of the spin-wave interaction,
the invariance under shifts in cp is preserved, while the
other symmetry is replaced by the Galilean space-time
mixing {10).

These symmetries have a compact representation in
terms of the algebra of the operators M' = f dx u and
4 = f dx y, generating rotations about the y and the z
axes, or, equivalently, shifts in cp and u, respectively.
Adding the momentum operator P = + f dx u 8 cp/Bx and
H, generating space and time translations, respectively,
we arrive at the operator algebra: [H, M'] = [H, P] =
[P, 4] = [P, M'] = 0, and [4,M'] = iL, where L is the
length of the interface, while the Galilean invariance yields

we note that the overall factor a that went into
the rescaling of time is consistent with the dynamical
exponent z = 3/2. It is easily seen that the first term
in (7) corresponds to the spin-wave approximation for the
Heisenberg ferromagnet [the first term in (5)]; the second
term representing the drive then corresponds to a spin-
wave interaction.

We can now show that the Hamiltonian (7) is equivalent
to the Fokker-Planck equation (4) for the noisy Burgers
equation (2). Consider u and iB/Bu in (4) as canonical
operators, [i 6/Bu, u'] = i 6(x —x'). The canoni-
cal transformation i 6/6u = (v/5)'t [j (x) —iu(x)]
and u = (5/v)'t u(x) takes 2 in dP(u, t)/dt =
5 (u)P(u, t), Eq. (4) into a form 5 similar to (7), but
with other coefficients. With the identification J = v
and e = 2A(A/v)'tz, we obtain II = 5—, and the
equivalence follows, since the state ~'I") representing
P(u, t) evolves according to d/dt~'P) = H['I)—

Noting that the time evolution operator for the master
equation is exp( —tH) [14], the equations of motion for p
and u follow from d p/dt = [H, cp] and du/dt = [H, u),
1.e.,

Thus e is indeed a structural constant of the algebra of
symmetries justifying the renormalization leading to (7),
which was chosen so that e is invariant under changes in
the microscopic scale a. The above commutation relation
has a simple interpretation in the case of the elementary
excitations: For the lowest energy states carrying momen-
tum k (11) implies rotation of the global polar angle 4
with constant angular velocity d4/dt = 2ek

We now attempt to find an elementary excitation with
the ~ ~ k j dispersion relation by a direct analysis of
the nonlinear equations of motion (8) and (9). Such
an analysis is most easily carried out in the classical
limit followed by quasiclassical quantization (cf. [13]).
We therefore first replace the operators p and u in (7)
by the field variables p and u satisfying the Poisson
bracket (u(x), p(y)) = 6(x —y). The classical equations
of motion Ru /Bt = —iiH, u) and 8 p/Bt = —i(H, p)
then have the same form as (8) and (9) with u and p
replaced by u and p. For e = 0 we find small ampli-
tude spin waves about the ground state with quadratic
dispersion leading to z = 2. However, for e 4 0 we
identify nonlinear nonperturbative soliton solutions prop-
agating with velocity v, i.e. , replacing 8/Bt by v8 /—Bx
we obtain —v Bu/Bx = —iJB cp/Bx + 2eu Bu/Bx and
—v 8 p/Bx = i JB u/Bx + 2eu 8 p/Bx, which are eas-
ily solved by quadrature.

We note that by forming the quotient of the two
equations and integrating once we obtain (Bu/Bx) +
(8 p/Bx) = C. For solutions with vanishing derivatives
at infinity, C = 0, and we have

au/Bx = ~i(3q/Bx. (12)

By insertion we obtain one equation for the slope
u, which by quadrature yields Bu/&x = ~(e/J)(u-
u+) (u —u ), where we have related the constant of in-
tegration to the boundary values u~ = u(~~) at infinity,
and the "mean amplitude-velocity" condition

u+ + u — = v/E, (13)

defining permanent profile kink or soliton so-
lutions. Requiring u to be finite for all x the
soliton shape is given by (u —u+)/(u —u) =
exp([ —([e

~ / J) ~ u+ —u
~ (x —xp)]j with "center of

mass" position xp. For Bu/Bx = ~i Rp jBx we have
sgn[@(u+ —u )] = ~ 1, respectively, i.e., kinks with
opposite slopes. In order to interpret these solutions as
excitations above the ground state, which classically is
the uniform solution u = 0, we must satisfy the boundary
conditions u = 0. We achieve this by grouping kinks
in pairs, i.e., the kink (u, u+) = (0, —v/e) at smaller
x with the kink (u, u+) = (—v je, 0) at larger x. The
distance between the kinks in a pair is assumed to be
much larger than the intrinsic width J/~v~ but much
smaller than the length of the system.

The energy momentum relationship for a pair is ob-
tained by noting that the energy F is given by {7),
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while the momentum, the generator of translation, is P =
+ f dx u i)tp/t)x . Inserting (12) we obtain for a single
kink E = —(1/3) ~ e(u+ —u ) [ and P = —(i/2) ) u+
u ~sgn(v). For a pair of kinks moving with a constant
velocity v, both energy and momentum are doubled and
we obtain

E = —(2/3)(v ~/e, P = —iv /e sgn(v). (14)

We note that the momentum is purely imaginary; this
is a feature of the complex field equations (8) and (9).
Eliminating v we obtain the dispersion law

2E = ——
~e~ [iPsgn(v)] / .

3
(15)

In order to revert to a discussion of the quasiclassical
limit of the spin chain, the final step in our analysis
amounts to a quasiclassical quantization of the above pair
solutions. In the spirit of the Landau quasiparticle picture
we envisage that we can label the low-lying quantum
states in terms of a dilute gas of pairs of nonlinear
kinks with dispersion law (15). Noting that the quantum
state propagates according to exp( Et ——iPx) the group
velocity ~dE/dP~ of a two-kink wave packet is v.

A few comments are in order: (a) The amplitude of
a pair, v/e, diverges for e ~ 0 implying that these are
indeed nonperturbative solutions of the field equations,
characterizing the strong-coupling renormalization group
fixed point. (b) The kink solutions characterized by (13)
are manifestly invariant under the Galilei transformation
(10). (c) Inserting t7tp/Bx = i du/t)x into the field equa-
tions (8) and (9), we obtain the deterministic noiseless
Burgers equation. We conclude that the above kink solu-
tions correspond to the well-known shock wave solutions
[3]. In the interface representation a pair of kinks forms
a step: a localized slope fluctuation propagating in the lat-
eral direction.

In conclusion, two main results for the theory of the
noisy Burgers-KPZ universality class have been obtained
in this Letter. First, although supported by an exact Bethe-
ansatz solution for a special value of the parameter e and

by numerical results, the equivalence between the lattice
model (5) and the continuum Langevin equations (1) and

(2) remained a conjecture [14,15]. Here we have shown,
using well-known methods in the quantum theory of spin
chains [12], how to implement the continuum limit of the
lattice model (5). The rescaling leads to a continuum
Hamiltonian (7), which by a canonical transformation
is reduced to the Liouville operator (4) of the Fokker-
Planck equation corresponding to the noisy Burgers-KPZ
equations. The field operators appearing in the continuum
Hamiltonian absorb the powers of the lattice constants,
making their dimensions equal to the scaling dimensions
of the corresponding quantities of the noisy Burgers-KPZ
universality class. The choice of the scaling dimensions
is governed by the (generalized) Galilean invariance of the

theory (10), which is explicitly realized in the commutation
relation (11)of the symmetry algebra.

Second, the space-time scaling t ~ x' with the expo-
nent z = 3/2 appears in the theory of the d = 1 + 1

noisy Burgers equation as the only one consistent with
the Galilean symmetry of the problem [4]. However, lit-
tle physical intuition exists concerning the physical real-
ization of this dynamical scaling. Here we have made a
step towards a better understanding of the physical nature
of the problem by identifying explicit nonlinear soliton
solutions to the classical limit of the nonrelativistic field
theory. These solitons correspond to the shock wave so-
lutions of the deterministic Burgers equation. Grouping
shock waves of the opposite sign moving with the same
velocity, we obtain a localized excitation with respect to a
uniform solution, which in the KPZ representation corre-
sponds to a step propagating along a growing interface. In
the quasiclassical limit these soliton pairs form a branch
of quantum excitations, exhibiting the nontrivial co ~ k
dispersion relation.
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