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Neurocomputation by Reaction Diffusion
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This Letter demonstrates the possible role nonsynaptic diffusion neurotransmission may play in
neurocomputation using an artificial neural network model. A reaction-diffusion neural network model
with field-based information-processing mechanisms is proposed. The advantages of nonsynaptic
field neurotransmission from a computational viewpoint demonstrated in this Letter include long-
range inhibition using only local interaction, nonhardwired and changeable (target specific) long-range
communication pathways, and multiple simultaneous spatiotemporal organization processes in the same
medium.

PACS numbers: 87.10.+e, 07.05.Mh, 84.30.Vn, 87.22.Jb

Synaptic transmission had been considered as essen-
tially the exclusive mechanism for neurotransmission,
subject to neuromodulators, in brain functions. This is
also the case in artificial neural network studies. How-
ever, there is increasing evidence of nonsynaptic diffusion
neurotransmission, also referred to as nonsynaptic field
neurotransmission or volume transmission, in the brain
by diffusion through extracellular Quid and across mem-
branes [1—5]. Such evidence, together with the evidence
for a highly plastic brain, point to the need for a theory of
neurotransmission and brain functions where nonsynaptic
diffusion neurotransmission plays a fundamental role.
Research into neural network models of spatiotemporal
organizations in the nonsynaptic diffusion neurotrans-
mission field is an effective way to achieve theoretical
understanding of the computational roles of such neuro-
transmission. Nonsynaptic diffusion neurotransmission is
believed to occur in a larger time scale than does com-
munication through synapses. It distributes information
to a general region of sensitive neurons. In most cases,
it may be involved more in regulating and modulating
the activity of a neural circuit than in determining what
the activity actually is, but it may also have similar target
cell specificity as do synaptic circuits [6,7]. There is
evidence showing that nonsynaptic diffusion neurotrans-
mission may be the primary information transmission
mechanism in certain normal mass, sustained functions,
such as vigilance, hunger, long-term potentiation, brain
tone and mood, and response to certain sensory stimuli,
as well as several abnormal functions such as mood
disorder, spinal shock, spasticity, and drug addiction
[1]. It may also play a role in functional organization
following brain damage [2]. For a more recent account of
details on the dynamics and role neuromodulators in the
neocortex, see [8]. This Letter aims to demonstrate some
advantages of nonsynaptic diffusion neurotransmission
from a computational viewpoint, including long-range
inhibition using only local interaction, nonhardwired
and changeable long-range communication pathways,
and multiple simultaneous spatiotemporal organization
processes in the same medium.

It will be shown in this Letter that nonsynaptic diffusion
neurotransmission can be modeled using neural network
circuits with electrical connections. Furthermore, using
this model, it will be shown that a neural network with
diffusion transmission may compute the winner-take-all
logic in a large array of neurons using only local con-
nections, and may transmit information by propagating
structured traveling waves without attenuation as in an
excitable medium. The winner-take-all network is a key
component in neural networks for unsupervised compet-
itive learning and self-organizing topographic maps [9—
11]. It selects from an array of neurons a single neuron, or
a neighborhood of a neuron, that received the maximum
stimulus. In a winner-take-all network, every unit has
the same center-on surround-off connection weight pat-
tern, and each unit must have inhibitory connections to all
the other units in the network. A hardware implementa-
tion of the winner-take-all network requires the network's
graph to be completely connected. Without the complete
connection, multiple local maxima will be selected, in-
stead of a single global minimum. However, the number
of connections in a compete connection grows quadrati-
cally with the number of units in the network. For a large
network, this high connection complexity may create a
problem in hardware implementation.

Reaction-diffusion systems describe many biological
processes. Examples include the Hodgkin-Huxley equa-
tions, the equations describing the propagating of nerve
pulses and the potassium ion and calcium ion concen-
trations in cortical structures. Reaction-diffusion systems
have been shown to be able to propagate structured wave
patterns without attenuation [12—14], to form stable pat-
terns, and to select the maximum stimulus using only local
interaction [15—19]. A reaction-diffusion system requires
the presence of a pair of antagonistic neurotransmitters.
Note that a neurotransmitter may interact with more than
one other neurotransmitter. Of course, the same system
may also model diffusion neurotransmission of a single
neurotransmitter without the antagonistic inhibitor. This
can be treated as a special case in a reaction-diffusion sys-
tem. However, without an antagonistic inhibitor, the spa-
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tiotemporal organizations possible in a diffusion process
will be rather limited, e.g. , to a monotone spatial gradient
distribution in a homogeneous medium. Therefore the fo-
cus will be on using reaction-diffusion systems to model
the spatiotemporal organizations in a nonsynaptic diffusion
neurotransmission field. The two-dimensional reaction-
diffusion system is described by the following equations:

Ba ca~I BQ Bo=p, c, +
~

—pa+D, 2+
rit h j r)x2 r)y2

Bh ri2h= phcI cl —p, hh + Dh, +, l, (I)
r)x2 By2 j '

where a(x, y, t) and h(x, y, t) are the concentrations of
the activator and the inhibitor in a two-dimensional space.
Both the activator and the inhibitor diffuse with diffusivi-
ties D, and Dh, respectively. The inhibitor is produced at
a rate of phcha where ph is the density of neurons par-
ticipating in the production of the inhibitor. This implies
that the inhibitor is produced only when there is an acti-
vator present. The activator catalyzes its own production,
represented by the term p, ca /h, where p, is the density
of neurons participating in the production of the activator
and c is a constant. The p„ca2/h term also shows that the
inhibitor concentration h diminishes the production of the
activator because h is the denominator. The constant term

p c, means that there is activator production even at very
low activator concentrations. The catalytic effect is in the
form of a to obtain the desired behavior. One principle
of chemical production in a biological system is that there
should not be continual accumulation. Therefore the acti-
vator and the inhibitor should be absorbed in some way. In
the above equation, they decay in proportion to their con-
centration, represented by —p, ,a and —p, z h, respectively.

Formation of stable spatial patterns has been shown by
analysis and by simulation if the inhibitor diffuses much
faster than the activator and has a much shorter time con-
stant. In more detail, in order to achieve stable spatial pat-
terns from random fluctuations, strong autocatalysis and
an inhibitor range (Dh/p, h)'~ at least 2.5 times the acti-
vator range (D, /p, ,)'~ are required [18,19]. This is the
same principle of center-on surround-off interaction pat-
tern, i.e., short-range activation and long-range inhibition,
found necessary for self-organization in neural networks
and in many neural functions. Different patterns may be
formed by adjusting the coefficients in Eq. (1). If the dif-
fusion range of the inhibitor covers the entire field, then
the activator distribution will converge to peak around the
global maximum of the initial perturbation. When diffu-
sion range of the inhibitor is smaller than that of the acti-
vator, more specifically, when D, ) Dh and p, , ) p, h,
the system becomes an excitable medium propagating
structured waves without attenuation [12—14,18,19].

Therefore, if we can properly model the above reaction-
diffusion system in a circuit network, it may be used to
model spatiotemporal organization in a nonsynaptic diffu-
sion neurotransmission field. How do we model diffusion

LP LP
FIG. 1. A locally connected network that models the reaction-
diffusion equations. a(i,j, t) and h(i,jt) are ,two modulated
signals each of which has its own carrier.

and reaction in a neural network? The reaction-diffusion
equations assume a continuous medium. In a neural net-
work, the cells are at discrete locations. Hence, the spatial
Laplacian operator need be approximated by finite differ-
ences. Activator and inhibitor can be modeled by using
two types of signals. Each cell in the network should
be able to produce, receive, process, and pass two types
of signals, one representing the activator, the other repre-
senting the inhibitor. To be able to do this while sharing
the same connections, two modulated signals, e.g. , am-
plitude modulated or frequency modulated, may be used
with one carrier for each signal. The carrier for a signal
is the same throughout the network. When a signal is re-
ceived, a corresponding bandpass filter and demodulator
will detect the next signal. After the signal is processed,
it will be modulated again to be passed onto the next cell.
The network shown in Fig. 1 is able to implement the
above ideas. The connections are limited to only the im-
mediate neighbors. A four-neighbor connectivity pattern
is shown for clear illustration. A square eight-neighbor
or a hexagonal six-neighbor connectivity pattern may be
used as well. Note that the modulated signals in the net-
work are used to model the diffusion of different chem-
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ical neurotransmitters in the brain. The propagation and
processing of each modulated signal represents the dif-
fusion of a different kind of neurotransmitter. The net-
work model implements the diffusion neurotransmission
process by a different mechanism and should not be in-
terpreted as a model of actual electrical neural signals in
the brain. With proper choice of network parameters of
diffusion ranges (diffusivities and decay rates) for the two
types of signals, the network may function as a winner-
take-all network or an excitable medium transmitting in-
formation by propagation of structured traveling waves.

An important feature of this network is its capability
to have multiple simultaneous spatiotemporal organiga-
tion processes in the same network. These processes may
interact or may be independent. This may be advanta-
geous in neural computation and self-organization. It can
be achieved by using multiple modulation carriers and
bandpass filters at each cell. Since a signal may serve
as the inhibitor (activator) for more than one activator (in-
hibitor), the number of modulation carriers N satisfies

N~ + 1 ~ NM ~ 2N~, where N~ is the number of spa-
tiotemporal organization processes in the network.

Use of a modulated signal allows target specificity in
information transmission by wide-area diffusion. This is
achieved by adjusting the modulation carrier of a diffus-
ing signal and the receptor, i.e., the central frequency of
the bandpass filter. In this way, although the signal dif-
fuses to a wide area, only those neurons in the network
with the matching bandpass filter can respond to the sig-
nal. The modulation carriers and the bandpass filters may
be controlled by the spatiotemporal organization pattern in
the network. In nonsynaptic diffusion neurotransmission,
this may correspond to neurons tuned to be sensitive only
to specific neurotransmitters. The long-range communi-
cation pathways realized this way are not hardwired; they
can change as the environment evolves. This shows the
flexibility of diffusion neurotransmission. This flexibility
cannot be achieved using hardwired connections.

Examples of computer simulation results are given be-
low. Figures 2(a) and 2(b) show the initial input to a
network with an inhibitor diffusion range covering the
entire network (64 X 64 neurons) and a small (radius of
-6 neurons) activator diffusion range. Each pixel repre-
sents a neuron. The brightness of a neuron indicates the
amplitudes of the initial input to the neuron. Figures 2(c)
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FIG. 2. The initial array of input to the network represented
by a surface plot (a), and by a brightness image (b) where
the brightness of a neuron indicates the amplitude of its
initial input. (c),(d) Activator signal strength after the network
stabilizes (with an inhibitor diffusion range covering the entire
network, 64 X 64 neurons, and a small activator diffusion
range with a radius of —6 neurons). As illustrated, the
networks picks out the global maximum in (a),(b).
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FIG. 3. Examples of a one-dimensional wave pattern (a) and
a two-dimensional wave pattern (b) of the activator signal
strength in a network functioning as an excitable medium.

and 2(d) show the activator signal strength after the net-
work stabilizes. As illustrated, the network picks out the
global maximum in Fig. 2(a). Figures 3(a) and 3(b) show
examples of one-dimensional and two-dimensional wave
patterns of the activator signal in a network functioning as
an excitable medium.

Other neural networks simulating diffusion processes
exist. The cellular network by Chua's group [, ]20 21]
can simulate a diffusion process modeling an excitable
medium. Cellular neural networks limit the synaptic con-
nections to local neighborhoods. They have been shown
to be as universal as the Turing machine [20]. The re-
sistive network in the silicon retina by Mead's group
22,23] is also a diffusion network. The space constant

in the resistive network determines the diffusion range.
An antagonistic center-surround response pattern within a
small immediate neighborhood is achieved using the in-
teractions of the resistive network and the photoreceptor
and bipo ar ce a eacd b 1 11 t each node. A common characteristic
between the reaction-diffusion network and resistive net-
work is the high degree of shared connections. Many ar-
eas of the brain are known to minimize wiring by sharing
connections. This is in the same spirit as nonsynaptic dif-
fusion neurotransmission which reduces hardwiring by us-

ing wide-area diffusion neurotransmission. The reaction-
s ~

diffusion network presented in this Letter dsstingujshes
from the cellular neural network and the resistive network
in its use of modulated signals, representing antagonis-
tic signals for spatiotemporal organizations. This allows
center-on surround-off response patterns of any size using
only immediate local connections, multiple simultaneous
spatiotemporal organization processes, and target speci-
ficity in diffusion transmission.
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