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ac Josephson Effect in a Single Quantum Channel
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We have calculated all the components of the current in a short one-dimensional channel between
two superconductors for arbitrary voltages and transparencies D of the channel. We demonstrate that
in the ballistic limit (D = 1) the crossover between the quasistationary evolution of the Josephson
phase difference p at small voltages and transport by multiple Andreev reflections at larger voltages
can be described as the Landau-Zener transition induced by finite reflection in the channel. For
perfect transmission and vanishing energy relaxation rates the stationary current-phase relation is never
recovered, and I(rp) = I, ~ sing/2 ~ sgn V for arbitrary small voltages.

PACS numbers: 74.50.+r, 73.20.Dx, 74.80.Fp

It has been known for more than 20 years that electron
transport in short superconducting weak links with arbi-
trary transparency can be described in terms of multiple
Andreev reflections (MAR) [1]. Despite this, a quanti-
tative understanding of the ac Josephson effect in these
structures is still not complete. Various approaches to
quantitative calculations of the current at finite voltages
[2—5] were mainly focused on the dc current which ex-
hibits the so-called subharmonic structure, i.e., current
singularities at voltages V = 2A/en, n = 1, 2, ..., where
6 is the superconducting energy gap —see, e.g. , [6,7], and
references therein. However, a dc current carries only
indirect information about weak link dynamics, whereas
calculations of the ac currents [8,9] have been limited to
large voltages; the limitation being caused by the fact that
at small voltages it is necessary to take into account an

increasingly large number of Andreev rejections.
The aim of our work was to study a model of a short

constriction between two superconductors, which permits
the quantitative description of the current dynamics for
arbitrary voltages and transparencies of the constriction.
In this model, we found a new regime in the constriction
dynamics, which occurs at small voltages and connects
quasistatic variations of the Josephson phase difference at
V ~ 0 with MAR at larger voltages.

We consider a single-mode channel of electron gas with
transparency D between two superconductors (the calcu-
lations can be generalized in a straightforward way to sev-
eral separable modes). The length d of the channel is
assumed to be much smaller than the coherence length g as
well as the elastic and inelastic scattering lengths in the su-

perconductors. This allows us to neglect scattering in the
vicinity of the channel (besides that described by the reflec-
tion probability R = 1 —D) and makes it convenient to
describe electron motion in the constriction with the time-
dependent Bogolyubov —de Gennes (BdG) equations. As-
suming that the Fermi energy in the constriction is much
larger than the energy gap 5, we simplify these equations
further by adopting the quasiclassical approximation. The
condition d « s makes the superconducting properties of
the constriction itself irrelevant (even if there is a finite

5 in the constriction we can neglect it in the BdG equa-
tions on the small space scale given by d) [10]. It is eas-
ier to visualize electron motion in the channel assuming
that the constriction is normal (5 = 0), so that the trans-

port through the resulting superconductor —normal-metal—
superconductor (SNS) structure can be described directly
in terms of the Andreev reAection at the two NS interfaces.
We adhere to this framework in what follows.

The final simplification is that impedance of the single-
(or few-)mode channel is on the order of h/e and is
much larger than the characteristic impedance of a typical
external circuit. This eliminates the necessity (essential
for a realistic description of the Josephson junctions
with low resistance) of determining the dynamics of the
Josephson phase difference and voltage across the channel
self-consistently. We assume that the voltage is constant
in time.

The model we obtain is directly applicable to the atomic-
size Josephson junctions [11]which exhibit ballistic quan-
tization of the stationary critical current [12]. Another
context of current interest in which the model is relevant
is high-critical-current Josephson junctions [6,13], which
are believed to be adequately represented as an ensemble
of atomic-size microconstrictions, each of which carries a
few conducting electron modes.

Under the assumptions outlined above, the BdG equa-
tions for transport in the constriction can be solved in
terms of the two scattering processes for electrons and
holes, along the same lines as in the stationary case [14].
One process is the Andreev reflection at the NS interfaces
characterized by the reAection amplitude a as a function
of the quasiparticle energy e:

e —sgn(e) (e2 —Az)'tz,
a(+) g

+ (/2 /2)1/2

Another process is electron scattering in the constriction
characterized by a scattering matrix

(2)
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where ) t
~

= D and
~
r (

= R. The scattering matrix
for holes is the time reverse of S,~, Sh = S,~.

The last ingredient of the scattering scheme is the fact
that the energy of an electron is increased by e V each time
it passes through the channel from left to right, while the
hole increases its energy passing through the constriction
in the opposite direction. Because of this, the electron
and hole wave functions are sums of the components with
different energies shifted by 2eV. For instance, the wave
functions in region I (Fig. I) generated by the quasiparticle
incident from the left superconductor onto the channel can
be written as

P[( A + Jg )
kx + B x] (E+ )f/h

n

+[A eikx + & B e
—ikx]e —i(e+2neV)t/h

n

where k and e are momentum (equal to the Fermi momen-
tum) and energy of the incident quasiparticle, and a

(4)

Eliminating the wave amplitudes C and
from Eq. (4), we obtain the recurrence
amplitudes An and B,:

D, in region II
relation for the

a(e + meV). In Eq. (3) we took into account the fact
that the amplitudes of electron and hole waves are related
by the Andreev reflection and that the quasiparticle inci-
dent from the superconductor produces an electron in the
normal region with amplitude J(e) = [I—

~
a(e) ~

]'
The wave function in region II has a similar form with two
modifications: it does not have the source term J and is
shifted in energy by e V.

The wave amplitudes in regions I and II are related by
the scattering matrix (2):B„~(ay„A„+ JB,r

)
n ~~Se

n n n
t

= S,i
Cn ( a2n+1Dn

D 2n+2 2n+ 1 B2 n+1
1 a2n+ ]

2

D a2n+J
2(1 a2

]/2pAn+] a2n+]a2nAn = R (Bn+]a2n+2

2a2,
I —a,'„,)

Bna2n+1) + Ja(6„p.

1 a2n —]

These recurrence relations can be solved with the
method developed in Refs. [5,15]. The amplitudes
A, and B„ofthe wave functions (3) obtained in this way
determine all Fourier components of the current I(t) in

the channel:

I(r) = g I i2kevt/R

k

Collecting contributions from the quasiparticles incident
on the channel from the two superconductors and mak-

ing use of the fact that A( —e, —V) = —A*(e, V) and

B( e, —V) = B—*(e, V) [as follows from the recurrence
relations (5) and the form of the Andreev refiection am-

plitude (1)] we finally arrive at

e
eU6pp-

mh

E
de tanh

2T

&& J(e) (azkAk + a 2kA k)

+ Pil + az„a~~„+&~) iA„A'„+~ —B„B„+~))'
(6)

I II

FIG. 1. A schematic energy diagram of a short one-
dimensional channel with arbitrary transparency between two
superconductors. I and II denote the portions of the channel
separated by the scattering region.
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Some results of the numerical calculations of the
current from the recurrence relations (5) and equations (6)
are shown in Fig. 2. One can see that the ac components
of the current exhibit the subgap singularities at V =
2A/n similar to those in the dc current. It is clear
from Fig. 2 (and straightforward to show analytically)
that in the limit D ~ 0 Eqs. (5) and (6) reproduce
the tunnel Hamiltonian expressions for the current. In
the case of zero temperature (shown in Fig. 2) the
only component of the current that is nonvanishing at
finite reflection probability and small voltages is the
stationary Josephson current. In particular, it can be
checked that the limiting (V = 0) values of the sine
component [Fig. 2(b)] coincide with the first Fourier
harmonics of the stationary Josephson current I(p) =
(eDA/2R) sing/[I —D sin (p/2)] / .

Figure 2(c) shows that for large transmission probabili-
ties D the cosine component of the current is negative in
the wide range of voltages below the gap voltage 2A/e.
[Calculations based on Eqs. (5) and (6) at finite tempera-
tures show that this feature is preserved at temperatures
up to about 0.36.] This fact provides a possible resolu-
tion of the long-standing problem of the sign of the cosine
component of the ac Josephson current in tunnel junctions
(see, e.g. , [16]), if one assumes that due to nonuniformity
of tunnel barriers realistic tunnel junctions always contain
regions with high transparency.

The feature of the curves in Fig. 2, which to our
knowledge has never before been discussed, is the rapid
variation of all current components at small voltages
and small reflection probabilities. In order to understand
this new feature we consider first the case of perfect
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element r of the transition between two current-carrying
states in the energy gap which occur near the point

p = ~, where the energies F. of these states coincide-
see Fig. 3. The problem of this transition is then a
standard level-crossing problem, and the probability p
that the system will continue to occupy the same level
after crossing the point p = ~ is given by the Landau-
Zener expression. In our notation this expression is

~RA
(10)p = exp—

eV

FIG. 3. The energy diagram of the two quasistationary
current-carrying states E in the constriction. The arrows
show two possible routes of the system evolution due to
Landau-Zener transitions in the vicinity of the level-crossing
point cp = ~.
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The finite transition probability p modifies the current-
phase relation (9) as follows:

sing /2, 0 ( q ( vr,
(2p —1) sing&/2, n ( y ( 2'�.

(11)
In the relevant range of parameters (small R and V),

Eq. (11) reproduces the result of the numerical solution
of the recurrence relations (5). Indeed, at very small
V (eV ( Rb.), p ~ 0 and the system in its evolution
follows a current-phase relation which at T = 0 coincides
with the stationary relation I = I, sing/2sgn (coscp/2).
As a result, the dc current and the cosine component of
the first harmonic of the ac current are vanishing, while
the sine component is equal to its stationary value, in
agreement with Fig. 2. At larger voltages (eV ~ RA),
p ~ 1 and the current-phase relation approaches the one
for D = 1, I(tp) = I,sgnV

~
sing/2 ~. For this I(tp) the

sine component is zero, while the cosine component and
dc current are nonvanishing. All this means that the
reason for the rapid variation of all current components
with voltage at D = 1 and small voltages (see Fig. 2) is
that the probability (10) of the Landau-Zener transition
between the two current-carrying states changes rapidly
on a small voltage scale given by RA.

Before concluding, we would like to mention that our
calculations agree with most of the previous results on the
ac Josephson effect in short constrictions, in the parameter

ranges where previous results are available. In particular,
our numerical results (Fig. 2) agree with the numerical
results of Arnold [9] for large voltages. At D = 1,
Eq. (9) of our work gives the dc current in agreement with
that obtained by Gunsenheimer and Zaikin [4]. There
is, however, a contradiction between calculations at large
voltages based on the solution (7) and Zaitzev's results
for ac components of the current at D = 1 and large
voltages [8]. The reason for this contradiction is not clear
at present.

In conclusion, we have calculated the current in a short
single-mode electron channel between two superconduc-
tors for arbitrary voltages and transparencies of the chan-
nel. To the best of our knowledge this is the first time a
full description of the current dynamics in a weak link has
been developed. In the ballistic limit D = 1, crossover
from quasistationary Josephson current at smaller volt-
ages to multiple Andreev rejections at larger voltages
occurs at V = ~RA/e and can be described in terms
of Landau-Zener tunneling between the discrete current-
carrying states in the energy gap which are responsible
for the stationary Josephson current at V = 0.
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