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Anharmonic Phonon Lifetimes in Semiconductors
from Density-Functional Perturbation Theory
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The anharmonic lifetimes of zone-center optical phonons in C, Si, and Ge are calculated along with
their temperature and pressure dependences, using third-order density-functional perturbation theory,
Our basic ingredients are by-products of a standard linear-response calculation of phonon dispersions in
the harmonic approximation, resulting in a similarly good agreement with experiments. The microscopic
mechanisms responsible for the decay are revealed and shown to be different for different materials and
to depend sensitively on the applied pressure.
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The anharmonic decay of phonons into vibrations of
lower frequency is a crucial mechanism for energy relax-
ation in semiconductors as it controls the formation and
time evolution of nonequilibrium (hot) phonon popula-
tions, which are emitted by high-density excited carriers
when they decay towards their ground state [1]. Many
technologically important processes in which electrons are
excited high into the conduction band —either optically
or by an applied electric field —can be influenced by the
presence of hot phonons because these can be reabsorbed
by electrons, thus leading to a much slower relaxation of
the whole system towards equilibrium [2].

Experimentally, anharmonic lifetimes of individual
zone-center phonons can be extracted from their measured
Raman linewidths, if inhomogeneous broadening effects
can be neglected. Menendez and Cardona have obtained
the full temperature dependence for elemental semicon-
ductors more than a decade ago [3]. This is, however,
much more difficult in systems, such as heterostructures,
where composition or strain inhomogeneities add to the
usual (e.g. , isotopic [4]) broadening factors. Experiments
in the time domain by ultrafast spectroscopies have also
become available in recent years, but their interpretation
is often not straightforward, especially in complex struc-
tures, owing to the coupling between the dynamics of
carrier and phonon populations [1].

In this Letter we show that anharmonic lifetimes of
semiconductors can be determined within a predictive
theoretical scheme, allowing a full understanding of the
detailed microscopic processes that lead to phonon decay.
Previous studies in this field were based on strong simplifi-
cations of the possible mechanisms —as in the early paper
by Klemens that only considered decay processes into two
phonons of equal frequency [5] and/or on simplified phe-

nomenological models for describing harmonic and anhar-
monic interactions [6]. The only previous attempt to apply
ab initio techniques to the anharmonic decay of phonons
was done for Si using a semiempirical lattice-dynamical
model fitted to a few frozen-phonon calculations [7]. As a
result, the available theoretical estimates for bulk elemen-
tal semiconductors show a huge spread, and their ability to
account for experimental findings is rather questionable:
In Ref. [3],Menendez and Cardona have provided a com-
prehensive discussion of the limitations of previous theo-
retical work, pointing out the critical ingredients that need
to be taken into account for reliable predictions. We have
developed a new first-principles approach to anharmonic
decay of phonons, based on density-functional perturba-
tion theory [8—10], which in recent years has proved to be
a very accurate and predictive tool for the study of vibra-
tions in semiconductors [9,11,12]. The crucial step is that
third-order perturbation theory [10]can be used efficiently
[13],and can be implemented using ingredients which are
by-products of standard ab initio lattice-dynamical calcu-
lations in the harmonic approximation [9,10,13], thus re-
quiring a similar computational effort and resulting in a
similar accuracy. Our method is demonstrated by calcu-
lating the phonon lifetimes in diamond, Si, and Ge, along
with their temperature and pressure dependence. Our re-
sults, which are in good agreement with available experi-
mental data, allow a clear understanding of the relative
importance of different decay mechanisms, and open the
possibility to study modifications of lifetimes that can be
induced through external parameters (such as, e.g. , pres-
sure and materials engineering) affecting the efficiency of
individual decay channels.

If only three-phonon processes are considered, energy
and momentum conservation dictate that the zone-center
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LTO phonon decays into a pair of phonons with opposite momenta, q, whose frequencies sum up to the frequency of
the decaying mode. Following Ref. [3], the inverse lifetime I of the LTO mode at zone center reads

~R nj(q) + n, , (—q) + 1

16%3M3a LTo(0) . . BuLTo(0)&u, , (q)&u, , (—q) cu, , (q)cu, , (—q)q Ji J2

~ ~( -o(0) — „(q)— „(-q)),

where N is the number of unit cells in the crystal, M is
the atomic mass, the cu's are phonon frequencies, the n's
are the thermal occupation numbers, the j's indicate the
phonon branches ( j = 1 —6 in bulk elemental semiconduc-
tors), F. is the crystal energy, and uj (q) is the amplitude of
the jth phonon mode at wave vector q. Besides the co's
and u's, which are immediately available from a lattice-
dynamical calculation in the harmonic approximation, the
new quantities that need to be evaluated are the third
derivatives of the crystal energy with respect to atomic
displacements. The latter are obtained using the method
proposed in Ref. [13] and based on the so-called 2n + 1

theorem, which ensures that the knowledge of the elec-
tronic wave function response of a system up to order
n in the strength of an external perturbation is sufficient
to determine the energy derivatives with respect to the
strength up to order 2n + 1 [10,14]. For n = 1, this theo-
rem implies that third-order anharmonic couplings can
be calculated from the linear response of the electron
wave function to lattice distortions, hence from the same
ingredients that enter standard lattice-dynamical calcula-
tions in the harmonic approximation [9]. Calculations
were performed within density-functional theory in the
local-density approximation, using the plane-wave pseu-
dopotential method. Our basis sets are truncated to a
kinetic-energy cutoff of 22 Ry for Si and Ge and to 55 Ry
for C. The pseudopotentials used as well as other technical
details are the same as in Refs. [9] and [12]. The sum over
the q points appearing in Eq. (1) is performed by the tetra-
hedron method, using approximately 1500 tetrahedra in the
irreducible wedge of the Brillouin zone. The nonsingular
part of the integrand is calculated on a much coarser uni-
form mesh and then Fourier interpolated on the finer grid,
much in the same way as phonon dispersions are obtained
from selected calculations on a relatively coarse grid, pass-
ing through interatomic force constants [9].

The calculated low-temperature linewidths of the LTO
phonons in C, Si, and Ge are reported in Table I [15], to-
gether with selected experimental data from Raman scat-
tering experiments. Although the spread in the published
experimental results is rather large [16—18] ranging
from 1.2 to 2.9 cm ' for C, from 1.24 to 2.1 cm ' for
Si, and from 0.75 to 1.4 cm ' for Ge—we can conclude
that the agreement is good.

To identify the relevant processes contributing to these
results, in Table I we also report the relative weight of
individual decay channels, obtained by restricting the sums
over the j*s in Eq. (1) to selected final states: "TA"

TABLE I. Calculated full widths at half maximum (21 ) of
zone-center optical phonons at zero temperature and pressure.
The corresponding experimental values are shown for compari-
son. The last columns indicate the relative contributions to the
linewidth of the individual decay channels (see text).

21 2I (expt. ) LA + LA LA + TA TA + TA
(cm ') (cm ') (%) (%) (%)

30.7' + 20.733.9
94.0
95.4

14.7
6.0
4.6

C 1.01
Si 1.48
Ge 0 67

1.2'
1 45
0.75

'From Ref. [16].
Klemens channel, see text.

'From Ref. [17(c)].
'From Ref. [3].

r
(j = 1, 2) and "LA" ( j = 3). The decay into one optical
and one acoustic phonon is kinematically forbidden in all
the present cases. It turns out that the dominant decay
mechanisms are not the same in the three semiconductors.
In Si and Ge, the process with maximum probability
(=95%) involves one LA and and one TA mode as final
states, and the clemens channel, i.e., the decay of the
LTO mode into two acoustic phonons belonging to a same
branch and with opposite momenta, turns out to give a
very small contribution. In diamond, instead, the Klemens
channels —TA + TA (=31%)and LA + LA (=15%)—
become dominant at the expense of the LA + TA channel.
This analysis is made more clear by defining the frequency
resolved final state spectrum, 7 (cu), i.e., the probability
per unit time that the LTO phonon decays into one mode
of given frequency ~ and one of frequency cu LTo —~.
In practice, 7 (~u) is obtained by restricting the sum over
ji and q in Eq. (1) to those values for which co~, (q) =
co, by inserting 6(a& —

co~, (q)) under the sign of the
sum. By its definition, y(cu) is symmetric around ~uLTo/2
and normalized to I . In Fig. 1 we display y(~u), as
calculated at T = 0 for the three materials considered
in this work. The peak at orLTo/2 corresponds to the
Klemens decay mechanism. As anticipated in Table I, this
peak is dominant only in diamond. By comparison with
the one-phonon density of states (DOS)—dashed lines in
Fig. 1, we realize that this occurs because diamond is the
only case where co LTo/2 falls in a region of relatively large
DOS [between TA(L) and TA(X) [12]]. The lateral peaks,
symmetric with respect to cuLTo/2, are instead dominant
for Si and Ge.

In Fig. 2 we display the temperature dependence of the
Raman linewidths in diamond, Si, and Ge, as obtained by
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FIG. 1. Calculated phonon density of states, n(cu) (solid line),
and frequency-resolved final state spectra, y(co) (dashed line),
for the three elemental semiconductors C, Si, and Ge at zero
temperature and pressure.

including the appropriate thermal phonon occupation num-
bers in Eq. (1). The agreement with experiments is very
good. The only deviations occur above T —RtuLTo/ktt,
i.e., far above room temperature, where higher-order an-
harmonic terms are likely to account for the discrepancies.

In Fig. 3 we report our predictions for the pressure de-
pendence of the Raman linewidths, as obtained by per-
forming the same calculations for the diamond structure
at different values of the crystal volume. For Ge, the re-
sults above 110 kbar are not physical because a structural
phase transition occurs at this pressure. The pressure de-
pendence is relatively featureless for diamond, whereas it
is roughly characterized by a linear behavior for Si and
Ge. The slope of this linear dependence, however, dis-
plays a rather well defined discontinuity at some critical
pressures P* (P* = 70—80 and 120—130 kbar, for Si and
Ge, respectively).

In order to get a deeper insight into the microscopic
mechanisms that determine the decay process and its
pressure dependence, we plot in Fig. 4 the wave vector-
resolved final state spectrum, i.e., the q-dependent func-
tion that appears in Eq. (1) under the sign of the sum.
Because of energy conservation, as expressed by the 6
function, this quantity is different from zero only on a 3D
surface of which we display the intersection with some
high-symmetry planes in the Brillouin zone (BZ). The
magnitude of the function on that surface (i.e., the mag-
nitude of the matrix element responsible for the phonon
decay) is represented by a color scale going from red to
violet in order of increasing magnitude. Let us focus on
Fig. 4(b) (zero pressure). Again, it is easy to identify the
contribution of Klemens processes in the closed contour
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FIG. 2. Temperature dependence of the full width at half
maximum, 2I, of the LTO phonon in C, Si, and Ge. Solid
lines are the result of the present calculation; squares represent
experimental data from Ref. [3].
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FIG. 3. Calculated pressure dependence of the Raman
linewidths (21 ) for C, Si, and Ge in the diamond structure.
The inset shows results for C over a larger pressure range.

falling approximately midway between the BZ center and
edge [this is where the LA phonon dispersions ALA(q)
reach the value cuLA = tuLTo/2j. The remaining contri-
butions correspond to the LTO ~ LA + TA process, and
come from wave vectors closer to the BZ edge, in all the
directions from 1 to zone boundary except around the
V —I direction, where the frequency of the TA branch
is so low that no matching LA frequency exists yield-
ing AT~(q) + orL~( —q) = cuLTo. A similar behavior is
found also for Ge. The maps of Figs. 4(c) and 4(d) show
that when the pressure increases new channels begin to
contribute, namely, those related to wave vector regions
around the K and L points. The analysis of the corre-
sponding final state spectra indicates that these channels
involve LO and TA modes as final states, which are now
compatible with conservation laws owing to two com-
bined pressure-induced effects: the increased LTO fre-
quency and the decreased frequency of the TA branches.
We conclude that the dependence of the phonon lifetime
upon pressure (and likely upon other applied fields as
well) is quasilinear as long as the overall kinematics does
not change: When the applied field determines the open-
ing of new decay channels otherwise closed, then a steep
variation of the lifetime may occur.

Of course, the detailed numerical values of the phonon
lifetime depend both on kinematic effects (i.e., on the
existence of allowed decay channels) and on dynamic
effects (i.e., on the magnitude of the matrix elements
responsible for the instability of one-phonon states). The
latter are given by the magnitude of the tensor of the third
derivatives of the crystal energy with respect to atomic
displacements. In order to assess the sensitivity of our
results to an accurate evaluation of the latter, we have
performed test calculations of the linewidths of Si and
Ge by interchanging their third-order coupling coefficients
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FIG. 4(color). Wave vector resolved final state spectra of Si (see text) at different pressures. (a) Sketch of the Brillouin zone;
(b), (c), and (d) color maps at pressures P = 0, 67, and 86 kbar, respectively. The color scale goes from red to violet in order of
increasing magnitude.

while leaving the kinematics (i.e., the phonon dispersions)
unchanged. In spite of the similarities between the
two materials, the results are affected by -25%. We
conclude that an accurate determination of the third-order
anharmonic tensor is in general needed for a quantitative
prediction of the lifetimes.

In summary, our results show that first-principles cal-
culations of third-order interactions provide an accurate
description of the anharmonic decay of phonons in semi-
conductors up to far above room temperature. Within
density-functional perturbation theory, the required com-
putational effort is comparable to that needed by standard
lattice-dynamical calculations in the harmonic approxima-
tion. This opens the way to the prediction of anharmonic
lifetimes in systems —such as some bulk compound semi-
conductors (e.g. , AlAs) or heterostructures where they
are not easily accessed by experiments, and to the study
of modifications, which can be induced by varying differ-
ent applied fields and/or the characteristics of the samples
by materials engineering.
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