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Driven Interfaces with Phase Disorder
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A variety of systems including charge density waves, flux line arrays, and surfaces of disordered
crystals can be described by the driven, phase-disordered sine-Gordon equation. Here it is shown that
the dominant effect of the phase disorder in the uniformly driven state is to introduce a quenched
random mobility for the moving "interface" or "phase" variable. Analytic predictions are obtained by
mapping the resulting disordered Kardar-Parisi-Zhang equation to a directed polymer problem, and the
predictions are compared to simulations of one-dimensional phase-disordered solid-on-solid models.
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Several condensed matter systems of current interest
can be described in terms of a phaselike variable h(x, t)
that evolves subject to the convicting influences of a
uniform driving force, a harmonic spatial coupling, and a
pinning potential that seeks to enforce a preferred local
random phase h = P (x). The main examples [1] are

(i) charge density waves (CDW's) [2,3], (ii) arrays of
flux lines in dirty type-II superconductors [4], and (iii)
crystalline films growing on a disordered substrate [5,6].
These systems are commonly modeled by the phase-
disordered, driven, noisy sine-Gordon equation

Bh/IIt = yV h —Vpsin27r[h(x, t) —P(x)]

of unity) of the height fluctuations in the moving state.
To put this issue into perspective, recall that in the
absence of phase disorder (@ = const) the fluctuations
of the moving interface have been shown to be governed
by the Kardar-Parisi-Zhang (KPZ) equation [10], both
in d = 1 [11] and in d = 2 [12]. Here I will show
that the most important effect of phase disorder is to
induce a spatially random, frozen contribution to the
coarse grained int-erface mobility [13], leading to large
scale fluctuations described by a KPZ-type equation with
quenched random growth rates,

tIh/ctt = vp + yV h + c(x) Vh + 2 [Ap + A~(x)](Vh) '

+ F + q(x, t). (1)
Here y is the stiffness, Vo the strength of the pinning
potential, F the driving force, and g is thermal noise with
short-range correlations in time and space.

In the first two examples given above h is a periodic
variable defined on the unit interval, describing the COW
phase and the deviations of the Aux line array from the
ordered state, respectively, while in example (iii) it is an
unbounded quantity measuring the height of the crystal
surface above the substrate. However, in the absence
of dislocations —which is, anyhow, a necessary condition
for the applicability of (1) to problems (i) and (ii)—one
may ignore the periodicity of h and use an extended zone
scheme where the unit circle is "unwrapped" along the
real line. Thus in the following we shall regard h(x, t) as
unbounded and refer to it as the "interface height" above
a point x in the d-dimensional substrate plane.

Recent work [7] has focused on the equilibrium (F =
0) behavior of (1) in d = 2, with the hope of gaining
insight into the nature of the vortex glass phase in
two-dimensional superconducting films [4]. While the
existence of a glassy low temperature phase seems to be
firmly established, different analytic methods have yielded
convicting predictions regarding its properties; numerical
approaches have so far remained inconclusive [8,9].

In this Letter I address the dynamics of (1) at finite
driving force F ~ 0. The primary goal will be to obtain a
large scale description (beyond the vertical lattice spacing

h„= n„+ @„, (3)

corresponding to the minima of pinning potential, where
n, is an integer. At the same time the substrate space has

+ g(x, t) + e(x) .

In addition to the additive random force e(x), the random
mobility also induces a random contribution to the coeN-
cient A = Ap + A~ of the KPZ nonlinearity (Vh) and a
random lateral drift velocity c(x). Provided the average
KPZ coupling Ao is nonzero, the spatially varying contri-
butions Aj and c are irrelevant by power counting and can
be neglected. Via the well-known Cole-Hopf transforma-
tion [10] Eq. (2) can then be mapped onto a problem of
directed paths in a random potential consisting of point
and columnar defects, for which analytic predictions are
available [14]. However, if Ap = 0, (2) describes a novel
universality class. Power counting indicates that the tilt-

dependent terms c Vh and 2 A~ (Vh) are relevant in di-
mensions d ( 2. I will argue below that the case Ao = 0,
while probably not generic for the three physical problems
described above, is in fact realized by the driven sine-
Gordon equation (1).

Rather than working with Eq. (1), I use a class of
discrete, phase-disordered solid-on-solid (SOS) models
[9,15] which can be regarded to arise from the strong
coupling (Vp ~ ~) limit of (1). For large Vp the height is
forced to assume the discrete set of values
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FIG. l. Simple phase configurations of the one-dimensional
phase-disordered SOS model. Deposition (indicated by shaded
particles) on a flat surface (a) requires a finite amount of
energy, while on the staggered substrate (b) growth can proceed
indefinitely without energy cost; (c) is an example of an
asymmetric configuration.
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to be discretized, so x becomes a site on a d-dimensional
lattice. The harmonic coupling is introduced through the
Hamiltonian

(4)
(xy)

where the sum runs over nearest neighbor pairs; q = 1

and q = 2 correspond to the standard SOS model and the
discrete Gaussian model, respectively. Driven dynamics
is implemented by Metropolis transition rates

R[h, h„~ 1] = min[1, exp( —A9E /ktiT)], (5)
where 9f~ = Aq;„—A;„~ F is the energy change as-
sociated with the move, supplemented with a bias contri-
bution F; for F & 0 the heights will steadily increase.

To see how a random mobility arises in this model,
consider first a local region where the substrate is almost
flat, i.e. , @„=@ti for all x [Fig. 1(a)]. At low temper-
atures and small driving force the interface velocity will
then be exponentially small; more precisely, if we assume
that the region can be approximated by a perfect sin-
gular substrate, the mobility vanishers exponentially for
(kIiT) ~ ~ in d = 1, and it is identically zero below
the roughening temperature in d = 2 [16]. Next, consider
a region where the random phases are close to perfectly

1
staggered, i.e., an alternating pattern @; = Pp + 4 (—1)'
in d = 1, or "checkerboard" P;~ = @o + —„(—I)'+~ in
d = 2 [Fig. 1(b)]. In such a region it is possible to add
particles to the crystal indefinitely without expending en-

ergy, and consequently the mobility remains nonzero for
T ~ 0; in fact, the zero temperature limit of the SOS
model on a staggered substrate is the well-known single
step growth model [17].

We conclude that at low temperatures different regions
of the interface will have widely different mobilities, de-
pending on the local configurations of the random phases.
By the same token, the dependence of the mobility on the
local inclination of the interface [10—12,18] will vary in

space. For example, for the fiat configuration in Fig. 1(a)
the mobility is a strongly increasing function of inclination
at low temperatures, while in the staggered case [Fig. 1(b)]
it decreases with inclination [11,18]; a contribution to the
mobility that is linear in Vh arises from phase configura-

g(t) —t/(ln t)~, (6)

where P = 2 in d = 1 and P = 1.60 in d = 2. The
slope of the hillsides asymptotically (but slowly) ap-

tions that break the x ~ —x symmetry [Fig. 1(c)]. These
considerations can be summarized in an expansion for
the mobility of the form p, = p, + p, o(x) + p, 1(x) Vh +
z [p, z + pz(x)](Vh) + higher order terms. Writingthe
local interface velocity as Bh/Bt = p, F, we obtain (2) with

vo = pF, c = Fp~, A = p2F, and E = ppF. By con-
struction the random growth rates e(x) (as well as the other
random coefficients) in (2) are bounded; i.e. , their distri-
bution has a finite support, being limited by the mobilities
of the fastest and slowest local phase configurations.

The argument shows that the disorder has a persistent
inhuence on the moving interface, which accumulates
over time. This effect was discussed in the CDW context
by Coppersmith, who argued that it will in fact lead to
phase slips and a breakdown of the description by (l)
in sufficiently low dimensionalities [3]. In essence, she
analyzed the large scale equation (2) in the absence of the
tilt-dependent terms c . Vh and (A/2) (Vh) . This linear
problem is easily solved, and one finds indeed that the
local "phase" gradient diverges for d ~ 2 as ((Vh) )—
t(z ")~2 with time or as ((Vh)2) —I with length
scale. However, in the presence of inclination-dependent
terms the situation changes profoundly, because then the
interface can locally change its velocity by assuming a
nonzero tilt; in this way different parts of the system
can adapt to a common speed, and the Local gradients
remain bounded at the expense of an increase in the long
wavelengtII fluctuations.

A simple manifestation of this mechanism was pointed
out recently by Balents and Fisher [19], who studied the
linearized equation (2) in the presence of a constant drift
velocity c and showed that such a term implies bounded
phase gradients even in d = 1. A nonzero average drift
arises naturally in the context of sliding CDW's [19]but is
excluded by symmetry in the case of (untilted) interfaces
of primary interest here.

To explore the dynamical consequences of the random
mobility I have carried out simulations of two one-
dimensional phase-disordered SOS models, governed by
(4) with q = 1 and q = 2. Before discussing the results,
I summarize the properties of (2) for Ati 4 0. Neglecting
the random contributions c(x) and At(x), the height
function h(x, t) can be viewed [10,20] as the restricted
free energy of a directed, Ilexible line (a "directed
polymer" ) of length t, with one end fixed at the point
(x, t) in (d + 1)-dimensional "space-time" and subject to
quenched point [rt(x, t)] and columnar [e(x)] disorder,
the latter having a distribution of finite support. Flory-
type arguments applied to this problem yield the following
predictions [14]: Starting from a fiat configuration h =
const at time t = 0, typical configurations at time t show
a hill-valley structure with the distance between peaks
increasing as
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proaches a fixed finite value. Consequently, the interface
width W = ((h —(h)) )' becomes proportional to s»,

and the height difference correlation function behaves as

G(r, t) = ([h(x + r, t) —h(x, t)] ) —r (7)
for r ( s. As the slopes of the hillsides steepen, the
average interface velocity (the free energy per unit length
of the polymer) v (t) = (Bh/tit) approaches its asymptotic
value v(~) with a leading logarithmic correction

Av = v(t) —v(~) ——Ap/(1nt)~ '. (8)

The asymptotic velocity is determined by the regions
of highest mobility if Ao ~ 0—because then the slower
regions can adapt by tilting —but by the low mobility re-
gions if Ao ( 0. The purely columnar problem, corre-
sponding to the thermal noise term i1(x, t) being absent in
(2), has very similar behavior; the only difference lies in
the value of the exponent t/t in (6) and (8), which is given
by P = 1 + 2/d in d dimensions [14].

Figures 2 and 3 show numerical results for the interface
width W(t) and the correlation function G(r, t), obtained
using the SOS Hamiltonian (4) with q = 1 and q = 2
at k~T = 0.5 and F = 1. Both sets of data are nicely
consistent with predictions (6) and (7), if one takes into
account the slow approach to asymptopia implied by the
logarithmic factor in (6). For example, the last decade
of the data for the interface width can be well fitted also
by a power law W —tt with P = 0.8 for q = 1 and

P = 0.72 for q = 2, but a fit of the form (6) is superior
in both cases, with an empirical value of P = 2 for q = 1

and P = 3 for q = 2.

However, a clear difference between the two models
shows up in the average interface velocity v(t) (upper
inset in Fig. 3). The result for q = 1 is consistent with
a negative (lnt) ' correction, corresponding to Ao ) 0
in (8); this is confirmed by a direct measurement of the
inclination-dependent velocity [18], which shows that v
increases with increasing tilt both for individual phase
configurations [such as the fiat or staggered configurations
in Figs. 1(a) and 1(b)] and in the disorder average (lower
inset in Fig. 3). By contrast, no correction (8) can be
detected for the Gaussian (q = 2) model.

I attribute the difference to an extra tilt symmetry spe-
cific to the Gaussian model, in any substrate dimension
d. Note first that the energy difference entering the tran-
sition rates (5) can be written, for q = 2, as 59K~ =
~2(Vzh)„~ F + 2d where V'2 denotes the lattice Lapla-
cian. From (3) we have (V' h), = (V' n)„+ (V P)„and
hence the dynamics is invariant, for arbitrary fixed phase
configuration P„, under integer tilts, i.e., defining a tilted
configuration

h, =h, +u x;
then if the tilt vector u has only integer components,
the variables n, = n + u x are integers which evolve
identically to the n„. It follows in particular that the
interface velocity in the one-dimensional Gaussian model
is a periodic function of the imposed tilt u = (h;+t-
h;), with unit period, for any fixed configuration of
phases. One consequence of this symmetry is that the
KPZ nonlinearity in the pure system is quite weak, and
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FEG. 2. Simulation results for two versions of the phase-
disordered SOS model, obtained from single runs on a system
of size L = 10 . Main figure shows interface width as a
function of time. Dotted lines are power law fits W—
tp, while dashed lines show the asymptotics W —t/(lnt)~
predicted by (6); the values of the exponents are P = 1/3,
P = 2 for q = 1, and P = 1/4, P = 3 for q = 2. The inset
shows the local gradient ((h;+~ —h;)2) remains bounded.

FIG. 3. Main figure shows the height difference correlation
function (7) for systems of size L = 10s at time t = 10~; the
dashed line indicates the prediction G(r) —r Upper inset.
illustrates the finite time correction to the interface velocity
v = {h;)/t Lower inset sh.ows the inclination dependence of
the velocity for the q = 1 model with a fiat (squares) and a
staggered (triangles) substrate, as well as in the disorder average
(crosses); these data were obtained from simulations of systems
of size L = 1000.
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consequently the early time regime in Fig. 2, during
which the disorder is not yet being felt, is governed by

1
the linear theory with P =

4 [10].
Upon disorder averaging the discrete tilt symmetry

extends to arbitrary real tilt vectors. Indeed, defining a
new set of variables through n„= n„+ [P„+ u x],
P, = P„+ u x —[@„+u x], where t y] denotes
the integer part of y, we can write h„= n, + @„
and since V h = V h from (9), n„and n„have the
same evolution. Thus the tilted interface evolves like an
untilted one with a different set of random phases. Given
that all phase configurations have the same statistical
weight, we conclude that the disorder-averaged properties
of the Gaussian model are tilt independent. This argument
carries over [21] to the sine-Gordon equation (1): The
tilted field h(x, t) = h(x, r) + u . x satisfies the same
equation as the original field h, if the random phases are
replaced by P(x) = (@(x) + u x)mod 1.

It seems plausible to associate the tilt independence of
the disorder averaged problem with the fact that Ao = 0
in (2); if this is correct, then the disordered sine-Gordon
equation (1), including its noiseless version used to model
CDW's [2,3], would also belong to this new universality
class. On the other hand, at least in the context of phase-
disordered SOS models, the tilt invariance of the Gaussian
model is clearly an anomaly; generically phase-disordered
driven interfaces would be expected to behave like the

q = 1 model (or the restricted SOS model investigated in

[15]),with Ao 4 0, and thus be equivalent to the directed
polymer with columnar defects [14]. Nevertheless, it is
of interest to gain a better understanding of the Ao = 0
situation, in particular of the relative roles of the random
lateral drift c and the nonlinearity; the relevance of these
terms is strikingly demonstrated in the simulations by
the fact that the local interface gradient (Vh) remains
bounded for the Gaussian model (inset of Fig. 2), instead
of diverging with time, as it would in their absence
[3]. While the results presented in Figs. 2 and 3 suggest
that the behavior for Ao = 0 is rather similar to the
generic case Ao 4 0, this may well be an artifact of one
dimension. Preliminary simulations of a lattice model
of driven Ilux lines in the plane [22] (which does not
share the tilt symmetry of the Gaussian and sine-Gordon
models) show qualitative agreement with the predictions
(6) and (7).

The conclusions of this work differ in important re-
spects from those of an earlier investigation [6], where
it was claimed that the asymptotics of (1) under strong
driving would be governed by the pure KPZ equation,
since the periodic potential, including the phase disorder,
becomes smeared out by the moving interface. I have
argued instead that the phase disorder generates a ran-
dom mobility whose effect persists, in principle, at arbi-
trarily long times and arbitrarily high temperatures and

completely changes the large scale fluctuations. It is clear
from the qualitative arguments given for the SOS models
that the emergence of the random mobility is related to
the short length sca-le cutoff (i.e., the lattice constant) of
the continuum theory, which might be the reason why it
was not noted previously.
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