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The diffusion coefficient (D) and drift mobility (x«) of molecularly doped polymers have been
obtained by Monte Carlo parameter fitting of a theoretical equation to time-of-flight transient

photocurrent signals.

The logarithm of w increased linearly with vE. The negative field dependence

of the mobility that has been observed at low electric field appeared to a superimposition of drift

and diffusion.
with 772,

PACS numbers: 66.30.Dn, 72.40.+w

Charge-transporting molecularly doped polymers
(MDP’s) form a system in which a carrier hops between
molecules. MDP are widely used as transport layers
for organic photoreceptors [1,2]. Recently, MDP have
attracted attention as white light emitting organic elec-
troluminescent devices [3], photorefractive devices [4,5],
and synapse bond devices [6].

The operation of these devices depends on the char-
acteristics of carrier transport; hence carrier transport in
MDP has been the subject of numerous investigations
[1,2,7-10]. Although the transport of carriers is ex-
pressed by drift and diffusion, the diffusion coefficient
(D) has not been discussed because D is difficult to mea-
sure directly.

In an ordinary crystalline semiconductor, Einstein’s law
relating carrier mobility to diffusivity holds. Therefore,
the diffusivity in the crystalline semiconductor can be de-
termined from the mobilities [11]. Einstein’s law cannot,
however, be applied to a MDP that is a nonequivalent and
amorphous system because organic molecules essentially
retain their identity, interacting only weakly through van
der Waals forces [12,13]. Therefore the D of the MDP
needs to be measured individually.

In the case of nondispersive charge transport, the tran-
sient photocurrent of the time-of-flight (TOF) measure-
ment [14] has a rectangular shape. Mobilities have been
determined from transit times derived from the intersec-
tion of the asymptotes to the plateau and the trailing
edge of the transients [14]. However, the decay of an
actual experimental photocurrent does not have a rectan-
gular shape. The spread of carrier packet and arrival time
changes the shape of the signal [15]. Although the drift
mobilities obtained from the intersection of the asymp-
totes have been examined [1,2,16], the transit time of
mean drift mobilities cannot be defined as shoulders in
transient current signals.

In order to determine the drift mobility and D, we
analyzed the current signal [17-19]. In this Letter, we
first introduce an equation for the shape of the transient
photocurrent. Then, Monte Carlo fitting of the theoretical
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An anomalous field-assisted D was observed. The logarithm of D decreased linearly

equation to experimental signals is used to extract the drift
mobilities and the diffusion coefficients.

A sample of thickness (d) and dielectric constant (&) is
sandwiched by blocking contact metallic electrodes. The
semitransparent top electrode at the position x = 0 is con-
nected to a steady source of potential. The counterelec-
trode at the position x = d is returned to ground through
a resistor that is sufficiently small. Because the area of
the electrode is sufficiently larger than d, the electric field
vector points in the x direction. Holes of charge g and
electrons of charge —g are generated by pulse excita-
tion at the position x = 0 and the time ¢+ = 0. Maxwell’s
equation in the x direction is

d_Ezug(x)+£5( (1)
dx £ e

where Q is the charge on a pair of electrodes of the
sample, and p(x) is the charge density distribution of the
holes. The boundary conditions applicable to the solution
of Eq. (1) are E=0at x =0, and E =0 at x = d
because the electrodes are metal. Therefore the potential

® is given by
b = f E dx [ dx[ p(s) ds.
2

When the time constant of the external circuit is suf-
ficiently smaller than the transit time of the hole, ®
equals the constant voltage (V). Hence the current (J) is
given by

_d0 _ 1 (¢ fx
J = e djodxop(s)ds. 3)

We assume that the carrier distribution (n) is given by
no < (x — vt)z}
n=—F/———expi— (>
47r Dt P 4Dt

where v is the drift velocity and ng is the number of holes
[20]. The holes that arrive at the counterelectrode cannot
move, because they strongly combine with the electrons at

—a)+ p(x)
&
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the counterelectrode. In addition to this, the hole cannot
diffuse across the top electrode. Hence

0
p(x) = en(x) + e/_ n(s) ds 6(x)

+ e[ n(s) ds 6(x — d). 5)
d
Using Egs. (3), (4), and (5), we obtain
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where erf(x) represents the error function [21]. Monte
Carlo parameter fitting [22] of Eq. (6) to experimental
signals gives v and D.

We used this procedure to analyze carrier transport in
hydrazone-doped bisphenol-A-polycarbonate. The doping
concentration of 4-dibenzylamino-2-methylbenzaldehyde-
1,1-diphenyl-hydrazone (BMH) in the samples was 50%
by weight. The measurements were made by conven-
tional TOF techniques [9]. The 5.4 um MDP was sand-
wiched between a semitransparent Al-coated quartz glass
substrate and a Au electrode. A sample of the sandwich
structure was connected in a circuit with a voltage source
and a resistance (R). The MDP were excited through the
aluminum electrode by a 0.9 ns pulse nitrogen laser pulse
(NDC, JS-1200). The penetration depth is sufficiently
small compared with the thickness of the MDP. The en-
ergy per pulse incident on the MDP was adjusted such
that the maximum charge generation in the MDP was less
than 0.03C;V where Cj; is the capacitance of the sample.
The transit times were 1000 times larger than the time
constant of the external circuit C;R. Over the range of
fields and temperatures investigated, the mobilities were
reversible, with no signs of hysteresis.

Figure 1(a) shows the typical features of an experimen-
tal transient photocurrent (solid line) and fitting result (bro-
ken line). We have succeeded in obtaining excellent fitting
results for the experimental data over temperature ranges
from 260 to 350 K, and over electric field ranges from 1
to 36 MV/cm. We found that Eq. (6) was consistent with
the experimental signal, except for the tail of the signal. In
the region of the signal tail, experimental data were higher
than theoretical data. This difference could be attributed
to the detrapping of the carrier from deep traps, because
the density of states (DOS) profile is broad [1,7] and the
carriers in the higher portion of the DOS should act as the
deep traps [8]. We conclude that the transient photocur-
rent in the MDP can be described by Eq. (6).

The drift velocity (v) obtained by the fitting gives the
transit time (¢, = v/d). The time t, was not equal to the
time derived from the intersection of asymptotes to the
plateau and the trailing edge of the transient photocurrent
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FIG. 1. (a) Time-of-flight transient photocurrent signal. The
solid line is the experimentally measured photocurrent, and the
broken line is the current obtained by fitting the parameters
of Eq. (6) to the experimental data. (b) Time dependence of
the number of arriving carriers at the counter electrode. The
numbers were calculated from Eq. (5).

(t;) and the time for which the number of arriving
carriers at the counterelectrode was maximum (z,) as
shown in Fig. 1(b), where the number of arriving carriers
at the counterelectrode was calculated from Eq. (5).
Assuming that D is zero, t; and ?, are equal to f,.
The time 7, is the arrival time of the earliest carriers
at the counterelectrode. The earliest carriers should be
transported by the superimposition of drift and forward
diffusion.

The electric field dependence of the mobilities from #;
and ¢, are shown in Fig. 2. The logarithm of the mobility
(mq) calculated from 1, increased linearly with E.
The electric field dependence of Inu, calculated from #
was similar to that of Inu,, except for a negative field
dependence in the low electric field region. This negative
field dependence could be attributed to the contribution of
diffusion of carriers in the low electric field. The negative
field dependence of u; in a low electric field has been
reported by Borsenberger et al. [23] and Young and Pule
[24]. The analysis of the electric field dependence of w,
should be much more significant than that of u,; because
Mo does not contain the factor of diffusion.

Figure 3 shows the electric field dependence of D.
This means that the diffusion is assisted by the electric
field. Field-assisted (biased) diffusion has been reported
from simulation of the disorder model [15].

To separate the various dependencies of w, Schein,
Rosenberg, and Rice have developed a deconvolution
analysis [25]. We have analyzed the electric field and
the temperature (7') dependence of D using their method.
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FIG. 2. Square root of the applied electric field, VE, vs the
logarithm of the mobility. [J is the mobility u, obtained from
the transit time defined as the time at which the asymptotes
to the plateau and tail of the photocurrent profile intersect. W
is the true mobility u, obtained by fitting the parameters of
Eq. (6) to the experimental signal.

The analysis was based on the assumption that D could be
described by the empirical relations

D(T,E) = Doexpfi(T) expf2(E,T), (7N
where Dy is the prefactor diffusion coefficient. Provided
that f, — 0 as E — 0, the temperature dependence asso-

ciated with f; can be determined from the temperature de-
pendence of the zero-field D. Since the logarithm of D
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FIG. 3. Applied electric field dependence of the diffusion
coefficient D.

increased linearly with +/E as shown in Fig. 3, we can de-
scribe fL(E,T) = S(T)E, where S(T) = o1nD/oE.
We found a temperature dependence of zero-field diffusion
that followed a InD o T2 relationship. Consequently,

fi=—(T\/T)?, ®)

where T is a constant. S(T) was proportional to T2,
Therefore the data can be described as

fa = CJ(T1/T)* — AWVE, )

where C; and A are constants. Combining Egs. (7), (8),
and (9) then gives

D(T,E) = Dy exp[ —(?)2}

X exp[cd{(?f ~ A}\/E:l. (10)

From the slope and the intercept of the InD vs T2 plot, the
values of T and Dy were determined as 7, = 919 K and
Do = 6.1 X 1073 cm?/s. Furthermore, from the slope
and the intercept of the S vs T2 plot, the values of C,
and A were determined as C; = 1.2 X 1073 (cm/V)!/2
and A = 3.7.

Equation (10) is similar to the equation for the drift
mobility by the disorder formalism [7]

w(T,E) = #OexP[“_(;k%)z}

2
x exp[c{(i) - 22}\/5], (11)
kT

where o is the width of the DOS, X is a parameter that
describes the degree of positional disorder, ¢ is the pref-
actor mobility, and C is an empirical constant. The results
of this study showed that u, can be described by Eq. (11).
From the experimental results, the parameters were deter-
mined as o = 6.1 X 1073 cm?/Vs, o0 = 0.13 eV, 3 =
4.0, and C = 3.3 X 1074 (cm/V)'/2. The value of C
was roughly the same as the theoretical value obtained
by Bissler et al. Therefore u, was described by the dis-
order formalism.

Figure 4 shows that Inu, was proportional to InD at
constant temperature. This result agrees with the result
obtained by combining Egs. (10) and (11). Since the
slope of Inu, vs InD, v, is greater than 1 in Fig. 4,
D increased with the electric field much more than w,.
Richert, Pautmeier, and Bissler have reported that D
increased with the electric field much more rapidly than
the mobility from a simulation [13]. The experimental
results matched their simulation results.

Finally, we present an explanation of the negative field
dependence of u at low electric field. The time #; is
that for arrival of the earliest carriers that migrate by the
superimposition of drift and forward diffusion. Therefore
the following relationship is obtained:

d = puq.Ety + a+/Dty, (12)
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FIG. 4. Relationship between drift mobilities, u,, and diffu-
sion coefficients, D.

where d is the sample thickness and a is a constant.
a+/Dt; is the distance between the center of the carrier
packet and the edge of the carrier packet. Using Eqgs. (10)
and (11), the E slope of us [= d/(t;E)] is given by

dlnug dlnpy 1 ( 1 )
= + G +
INE IVE 1 — PG G + 1

D 1 o?
X ————1 | CaT? — —)
2d/.LaE{T2( AN 2

_ _ 32 - i}

(CqA — C3%) JEI’ (13)
where P = a?D/QuqEd), G =+2P + 1 — 1, and
usually 0 < P < 1. Since G >0, dlnu,/dE is
negative at low electric field. Hence the negative field
dependence of w; at low electric field is observed because
of the contribution of carrier diffusion.

Equation (11) of the disorder formalism indicates that
the mobilities decrease with increasing field at low fields
and high temperature. This is caused by the increase
of the number of traps that are due to off-diagonal
disorder (electric field induced trap) [7]. However, the
negative field dependence of w; at low electric fields
and low temperature cannot be explained by the disorder
formalism.

In conclusion, we have shown the successful fitting
of the transport equation to the experimental transient
current signal. We obtained drift mobilities and diffu-
sion coefficients simultaneously by fitting. The loga-
rithm of the drift mobility increased linearly with the
square root of the applied electric field. We found
that the negative field dependence of the mobility ob-
tained from the intersection time of asymptotes of the
plateau and the trailing edge of the transient photocur-
rent at low electric field appeared to be due to the su-
perimposition of drift and diffusion. We also observed
anomalous field-assisted diffusion. The diffusion coef-
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ficients showed the following relationship: D(T,E) =
Do exp[—(T1/T)*1exp[C4{(T1/T)* — A}WE]. The loga-
rithm of the diffusion coefficients was proportional to the
logarithm of the mobilities at constant temperature, and
the slope was not equal to 1 (D o« u”,y > 1). These ex-
perimental results agreed with the simulation results [23].
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