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Microscopic Structure and Intermolecular Potential in Liquid Deuterium
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We have measured the intermolecular structure factor and its thermodynamic derivatives in the
vicinity of the triple point of liquid deuterium, using two different neutron sources. We have also
derived the same quantities by using path integral Monte Carlo computer simulations. For the structure
factor, we find good agreement between the experiments and the simulation results, using either the
Lennard-3ones or a more realistic phenomenological potential. However, when the comparison is
extended to the thermodynamic derivatives, a clear difference is observed between the two different
intermolecular potentials.

PACS numbers: 61.25.Em, 61.12.Gz, 61.20.Gy

The qualitative behavior of the structure factor 5(Q) in
simple liquids is dominated by excluded volume effects.
Nevertheless, it has been shown recently [1] that a
precise neutron scattering determination of S(Q) provides
information on the basic molecular interactions allowing,
in particular, a test on the pair interaction model and some
estimate of the irreducible three-body potential term. In
addition, it has been shown that the density derivative
of S(Q) is much more sensitive to the details of the
interaction model than the function itself. For example,
a difference of more than 50% was obtained between
two different model potentials of krypton, in the liquid
phase near the triple point [1]. Detailed knowledge of
the microscopic structure of liquids is also a necessary
input of the present freezing theories for both classical
and quantum systems [2—6].

The importance of experimentally determining struc-
tural quantities in quantum fluids is enhanced by the con-
sideration that, at the present time, the development of
computer simulation methods allows one to deal theoret-
ically with a quantum system by using the path integral
Monte Carlo (PIMC) technique [7]. It is important to
notice that, despite the several neutron diffraction experi-
ments on liquid helium [8—10], no high precision com-
parison with simulations has been carried out on quantum
liquids.

Motivated by the previous considerations, we have
performed a set of neutron diffraction measurements
on liquid deuterium in the vicinity of the triple point.
Two different instruments have been used, namely, the
time-of-Ilight (TOF) diffractometer SANDALS at the
pulsed neutron source ISIS (U. K.) [11] and the two-

axis diffractometer 7C2 at the thermal neutron source of
Laboratoire Leon Brillouin [12] (France).

It is well known that different regions of Q are af-
fected by inelastic scattering for the two diffraction tech-
niques. Moreover, the calculation of inelastic corrections
for liquid deuterium can be carried out accurately for
a monochromatic thermal neutron source, while it is al-
most impossible for a pulsed source [11]. For these rea-
sons, it was decided to collect diffraction data on both
diffractometers. The two independent determinations of
the center-of-mass structure factor, relative to the same
thermodynamic points, agree with each other within the
statistical errors. Here we report the second set of data
(7C2) which has better precision and is extended to lower
Q values [13].

The experiment was done for seven thermodynamic
states, four on the T = 20.7 K isotherm and four on
the n = 25.4 nm isochore, so that the thermodynamic
derivatives of S(Q) could be derived. The data were
carefully corrected for absorption, multiple scattering,
and inelastic scattering. The high-Q intramolecular
contribution to the cross section was used for calibration
purposes [14]. As will be seen in the following
(cf. Figs. 1 —3), the present experimental neutron data
show a remarkable convergence toward the thermody-
namic limits at Q = 0.

The experiments were then followed by a set of PIMC
simulations performed at three of the seven thermo-
dynamic points of the measurements. In this way, a
meaningful comparison with the experiments could be ac-
complished, not only at the level of the microscopic struc-
ture factor, but also for its thermodynamic derivatives.
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FIG. 2. Density derivative of the structure factor on the
T = 20.7 K isotherm evaluated at n = 25.8 nm . The dots
with the error bars are the present experimental results. The
lines refer to the path integral Monte Carlo simulations. Their
meaning is as in Fig. 1. We presume that the oscillations
below 15 nm are not real and are due to the not perfect
extrapolation of the simulation results at large r. The dot at
g = 0 is obtained from the thermodynamic equation of state.

Q (nm ')

FIG. 3. Temperature derivative of the structure factor on the
n = 25.4 nm isochore evaluated at T = 22.0 K. The dots
with the error bars are the present experimental results. The
lines refer to the path integral Monte Carlo simulations, and
their meaning is as in Fig. 1. The dot at Q = 0 is obtained
from the thermodynamic equation of state. As in Fig. 2, we
note the presence of spurious oscillations in the simulation
results below Q = 15 nm

For the temperature derivative, evaluated at
T = 22.0 K on the 25.4 nm isochore and shown
in Fig. 3, the difference between the two interaction mod-
els is much larger than the experimental uncertainties,
and a clear distinction between the two models can be
inferred. It is worthwhile to note that the results for the
NWB potential are within the experimental error bars
down to 15 nm ', where the spurious oscillations start
to appear on both simulation models. Again, there is a
strong difference between the two simulation results, with
the LJ model resulting in a value for the amplitude of the
main oscillations (15 ( Q ( 30 nm ') that is roughly
one half of the value f-or the NWB potential.

Thus the superior reliability of the phenomenological
NWB potential, with respect to the simple LJ model,
emerges clearly from the comparison with the experimen-
tal information on thermodynamic derivatives of S(Q),
which appear to be much more sensitive than S(Q) itself
to the detailed form of the intermolecular potential.

In conclusion, we have shown that high accuracy de-
terminations of the intermolecular structure factor in the
liquid phase, when combined with its thermodynamic
derivatives, provide information on the detailed shape of
the pair interaction function even in a dense quantum Quid.
The scattering function S(Q) and its Fourier transform g (r)
are little sensitive to the details of the pair interaction po-
tential. However, the thermodynamic derivatives allow

a clear choice between the LJ and a more realistic phe-
nomenological potential, the better representation of the
experimental data being provided by the latter.

The thermodynamic derivatives of S(Q) are important
also because they carry information on the three-body cor-
relations [20—22]. The present structural information does
not suggest a strong contribution due to irreducible three-
body forces, since the pair potential alone is sufficient to
reproduce the experimental results.
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