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k Spectrum of Passive Scalars in Lagrangian Chaotic Fluid Flows
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An eikonal-type description for the evolution of k spectra of passive scalars convected in a Lagrangian
chaotic fluid flow is shown to accurately reproduce results from orders of magnitude more time
consuming computations based on the full passive scalar partial differential equation. Furthermore,
the validity of the reduced description, combined with concepts from chaotic dynamics, allows new
theoretical results on passive scalar k spectra to be obtained. Illustrative applications are presented to
long-time passive scalar decay, and to Batchelor's law k spectrum and its diffusive cutoff.
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The convection of a passive scalar by a fluid How is
a fundamental problem [1—10] that also has implications
in a large number of practical contexts (e.g. , chemical
mixing, climate, etc.). The basic describing equation is
the convection-diffusion equation,

(3@/Bt + v V@ = DV P + 5, (1)
where P(x, t) is the passive scalar density, S(x, t) is a
source of the passive scalar, v(x, t) is the Eulerian fiuid
velocity (assumed incompressible V v = 0), and D is
the diffusion coefficient. Our interest is in situations in
which D is small and v(r, t) varies on large spatial scale
but induces Lagrangian chaos [1—9] in the sense that
two nearby Quid elements convected by the fIow diverge
exponentially in time. In this case it has been shown that
fine scale spatial variations in P are rapidly produced [1—
6]. A particularly revealing characterization of such spatial
structure is the wave-number power spectrum of P, which
is often amenable to experimental measurement [7,8]. The
wave-number power spectrum F(k, t) is defined by

F(k, t) = (27r) " d"k' 6(k —~k'~)C(k', t), (2)

where n is the spatial dimensionality, C(k, t) is the spatial
Fourier transform of the two point correlation function
C(r, t) = (P(x + r)P(x)), and the average indicated by
the angle brackets is taken over the x domain of Eq. (1).

While Eq. (1) appears simple, its numerical solution
can be extremely demanding when D is small because
of the large range of spatial scales produced. One goal
of this Letter is to validate an eikonal-type set of ordinary
differential equations for obtaining the power spectrum
of passive scalars. We refer to these equations as the
RKS description (reduced k-spectrum description). The
RKS description will be shown to accurately reproduce
results from orders of magnitude more time consuming
computations based on the full partial differential equation
[Eq. (1)]. Furthermore, the RKS description will also
be shown to yield increased understanding, and this
understanding, in conjunction with concepts from chaotic
dynamics, will be used to obtain theoretical results.

In the rest of this Letter we will first introduce the
RKS equations, and then apply them to two model

d6x/dt = Bx . Vv(x, t) . (4)

In the absence of diffusion and a source [D = 0, 5 = 0
in (1)],Eq. (1) implies that the scalar is constant following
a fiuid trajectory, dP/dt = 0. Thus the difference in

@ following two infinitesimally separated fiuid elements
is also constant d(6x VP)/dt = 0. Now imagine that
we initially divide the fluid into many small areas. We
consider the case in which the initial condition is in the
form of a modulated sinusoidal function of x; that is,
@(x,O) = A(x) sin[f" k(x) dx + 0(x)] where k, A, and
0 vary on the scale of the Aow that is much larger
than ~k~ '. We can then assign a mean wave vector
to each area [11]. From d(6x VP)/dt = 0 we have
d(6x k)/dt = 0. The evolution of each k is then
obtained by the use of (4),

dk/dt = —(Vv) k

Specializing to two-dimensional (x, y) fiows, the differ-
ential separation Bx in (4) will have two linearly inde-
pendent solutions, 6x~ and 6x~, which can be chosen so
that )Bx&) is exponentially increasing (chaos) while (6x2(
is exponentially decreasing. The constancy of 6x2 k
requires that k be exponentially increasing in time except
for the special case when Bx2(0) k(0) = 0. In this case,
where k(0) is perpendicular to the contracting direction
of 6x, the constancy of 6x& . k along with the fact that

problems: (i) the long-time delay of a passive scalar, and
(ii) Batchelor s law [7,10] k spectrum and its diffusive
cutoff. The success obtained in these two cases suggests
that the RKS description will be useful in other passive
scalar problems as well.

The reduced k-spectrum description. —Consider a fluid
element initially (t = 0) located at position xo. Its
position at a subsequent time t is denoted x(xo, t), where
x(xo, t) is the solution of

dx/dt = v(x, t), x(xo, O) = xo.

The How is Lagrangian chaotic if initial differential
displacements 6xo typically yield exponentially growing
displacements at subsequent time, (Bx~/)Bxo) —exp(ht),
h ) 0, where 6x satisfies
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6x2 k = 0 requires that k be exponentially decreasing.
Thus a typical choice of k(0) eventually yields exponen-
tial growth, ik(t)i —exp(ht). The initial conditions for
which 6xz k = 0 (i.e. , k is exponentially decreasing)
represent a set of zero measure, yet, as we shall see, a
small number of initial conditions close to these will dom-
inate the long-time behavior of the scalar.

Under the present model, the spectrum is written as

tnC(t)

-4—

F(k, t) = g cut(t)6[k —ikt(t)i], (6)

where tut(t) is the variance contained in the 8th initial
area [tut(t) =

f& @ dx dy], and kt(t) is the time evolv-
ing wave vector for the parcel of fiuid in the 8th area. In
the absence of diffusion art(t) is constant in time. In the
presence of diffusion, the total variance will decay at a
rate determined by the diffusion coefficient and the local
wave number, d cut(t)/dt = 2kt(t)D—cut(t). Thus

tot(t) = tut(0) exp 2D —kt(t') dt'
0

(7)

Equations (3), (5), (6), and (7) constitute the RKS
description [12,13]. The following numerical experiments
show that these equations can provide a remarkably
accurate approximation to the true solution.

Long time dec-ay. —We use a Fourier code [14]
to solve Eq. (1) for @ with 5 = 0 and an ini-
tial condition, @(x, 0) = 2(cos[27r(x —y)/L]—
cos[27r(x + y)/L]), with L-periodic boundary con-
ditions in x and y. The How v is taken to
be v(x, t)/vo = te ft(t) cos[(2my/L) + 0&(t)] +
eYf2(t) cos[(2~x/L) + Oz(t)]). The functions ft
and fz are periodic in time with period T, ft(t) =
U[(T/2) —(tmodT)], f2(t) = U[(tmodT) —(T/2)],
with U[.] the unit step function.

The form of this Row is selected primarily because
it is conveniently solved using the Fourier code. At
any time only neighboring Fourier modes are coupled
together, which allows for an efficient, implicit numerical
solution of Eq. (1). The general conclusions we reach in
the remainder of this Letter should not be dependent on
this aspect of the Row.

If we set 0i = 02 = 0, then the flow is periodic
in time, and, depending on xo, solutions of (3) yield
either chaotic or nonchaotic [Kolmogorov-Arnold-Moser
(KAM)] orbits. Here, to model a nonperiodic liow, we
take the angles 0i and 02 to be different constant values
randomly chosen in [0, 27r] for each period, MT ( t (
(M + 1)T. In this case there are no KAM surfaces. The
solid curve in Fig. 1 shows the scalar variance C(t) =
fo fo P dxdy versus time obtained from the solution

L L

of (I) using the Fourier code. Here the parameters
are voT/L = 0.5 and (27r/L) DT = 1.25 X 10 6. Note
the small value of the diffusion. We see from Fig. 1

that C(t) evidences a long-time exponential decay [4],
C(t) —exp( —vt) with v = 0.187. This damping rate
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FIG. 1. InC(t) vs t/T; the solid line represents the solution of
Eq. (1) in Fourier space, and the diamonds are the results of the
RKS model.
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FIG. 2. F„, vs kL/2'; the dots correspond to the Fourier
solution, and the solid curve corresponds to the RKS solution.

is found to be independent of D for small D [4].
The diamonds plotted in Fig. 1 show the results of
repeating this calculation using the RKS description [15],
where, by Parseval's theorem, C(t) = X~&(t). Clearly,
the agreement is very good. Figure 2 shows results for
the normalized k spectrum F„, defined as F/ f F dk
averaged over the times t/T = 21, 22, . . . , 30. The result
from the Fourier code solution of (1) is plotted as dots,
while the histogram plot obtained from the RKS equations
is shown as a solid curve. These comparisons were made
for slightly larger diffusion (2'/L)zDT = 5 X 10
Again good agreement is obtained.

Batchelor's law and its diffusive cutoff —The above
situation had no source of the passive scalar [5 = 0 in

Eq. (1)]. We now consider the case of a steady source
at low wave number. In this case the time asymptotic
wave number power spectrum F,(k) is predicted to fall
off with increasing wave number as k ' [6,10] until
a diffusive cutoff range is reached where the falloff
is much faster than k '. This result is known as
Batchelor's law. Figure 3 shows a plot of kF,.(k) vs k
for the same How as used for Figs. 1 and 2, but with a

1752



VOLUME 75, NUMBER 9 PH YS ICAL REVIEW LETTERS 28 AUGUsT 1995

in[ ", 'F—(kt)], -io—

A I

v merically verified and used for cases where there are no
KAM surfaces (as in our examples). For large t, we can
evaluate first the p integral and then the h integral in

(8) by noting the presence of saddle points at p, = vr/2,
37r/2 and at I + G'(h, ) = 0. We obtain the exponential
damping rate v [C(t) —exp( —vt)] as

-14— v=h, , +G(h). (9)
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FIG. 3. (kL/2m)F, (k) vs kL/27r for the case of a steady
source of scalar variance. The solid line corresponds to the
Fourier solution, and the diamonds correspond to the RKS
solution.

C(r) = dh P(h, t)

dc@
exp[ —k&Dh ' exp(2ht) cos p], (8)
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where P(h, t) is the probability function of finite time
Lyapunov exponents [17—20]. That is, if we choose an
initial position in the How at random and evaluate the
largest Lyapunov exponent h for the orbit from that ini-
tial position over the time interval from time zero to time
t, then P(h, t) dh is the probability that the exponent lies
between h and h + dh. For large time, from theoretical
considerations P(h, t) is well approximated by the scal-
ing form [17—20] P(h, t)—:[tG"(h)/27r]'/ exp[ —tG(h)]
which expresses P(h, r) (which is a function of the two
variables h and t) in terms of a function of a single vari-
able, namely, the function G(h). This form has been nu-

steady source 5 = c os(2m x/L+ 27ry/L) Batch. elor's
law dependence, kF, (k) = const, is clearly seen in the
region before the diffusive cutoff, k ( (uo/DL)'/ . The
results from the Fourier code (solid line) and the RKS
equations (diamonds) [16] are almost identical.

Analysis of long time deca-y rate. —The exponential
decay of C(t) = X&cu&(t) appearing in Fig. 1 can be
evaluated by making use of (5) and (7). If one estimates
the solution of (5) by ke(t) —ke(0) exp(ht), one finds
that cup is approximately constant until a time tD-
In[2h/ke(0)D]/2h and then quickly decays to zero at
a rate much faster than exponential. Thus most of the
orbits do not contribute to the long-time decay of the
exponential. To obtain the observed exponential decay
we must consider exceptional initial wave vectors kr(0)
that are nearly at right angles to the initial direction of
exponential contraction of 6x [namely, at right angles
to Bxz(0)]. In this case the estimate for the solution
of (5) becomes ke(t) —ke(0) cos pe exp(ht), where cpr

is the angle between kr(0) and the initial direction of
exponential contraction of Bx. We then write C(i) as

Note that v is independent of the diffusion coefficient
D. To test the prediction (9), we have made histograms
of P(h, r) from the orbits. From these we can evaluate
G(h) via G(h) —= —t In[P(h, t)/t'/2]. Details appear
in Ref. [14]. Using a polynomial fit by G(h), Eq. (9)
yields v = 0.191 in agreement with the observed value
of v —= 0.187. Thus the long-time exponential decay is
dominated by exceptional orbits whose initial ke(0) had
only a small component in the direction of exponential
growth of k (contraction of Bx).

Further, the dominant contribution comes from orbits
with stretching rates h, smaller than the mean h where
G'(h) = 0. Thus this decay rate will be altered by the
presence of KAM surfaces, which are excluded by the
choice of the flow considered here but which are studied
in Ref. [14].

In conclusion, we find that the RKS equations provide
a remarkably accurate description of the evolution of
passive scalar k spectra in Lagrangian chaotic fluid Rows,
and that they also provide useful analytical insight.
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