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Stability of a Solitary Pulse against Wave Packet Disturbances in an Active Medium

Hsueh-Chia Chang
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

Evgeny A. Demekhin and Dmitry I. Kopelevich
Department of Applied Mathematics, Kuban State Technological University, Kransnodar 350072, Russia

(Received 10 March 1995)

Solitary pulses in an active medium, like those for the Kuramoto-Sivashinsky equation for thin falling
films, are often destroyed by growing and expanding wave packets from localized disturbances. The
stability of a solitary pulse is then determined by whether is can escape the expanding wave packets.
We show that this pulse-packet interaction is determined by the essential spectrum of the pulse and
a pulse stability theory can be derived from a simple extension of the classical convective instability
theory for a wave packet on the trivial state.

PACS numbers: 47.20.Ma, 47.35.+i, 47.52.+j

Solitary-pulse traveling-wave solutions are localized so-
lutions that propagate at a constant speed c. In a frame
traveling at the same speed, they are stationary and their
amplitude decays exponentially towards the trivial basic
state in both the upstream and downstream directions.
Such pulses are frequently observed among deep-water and
thin-film waves. The former class gives rise to the clas-
sical Korteweg —de Vries (KdV) and Boussinesq solitons
[1] while the latter pulses have been constructed from a
family of thin-film equations [2], including the Kuramoto-
Sivashinsky (KS) equation. Whether these pulses are ob-
servable depends fundamentally upon their linear stability.
Such pulse stability theories have been formulated for the
integrable deep-water waves [3—6]. The spectrum of the
solitary pulse consists of a discrete part and a continuous
essential part. Because of the integrability, the essential
spectrum of an integrable-pulse lies on the imaginary axis.
Its stability is hence determined entirely by the discrete
spectrum. Such instabilities have been observed for forced
KdV and Boussinesq solitons in the experiments of Lee [7]
and the simulations of Wu [1].

Pulse stability theory for nonintegrable systems like
thin-film waves has not been developed at all. The answer
seems trivial for an active medium where the trivial state
is unstable to spatially periodic disturbances. Part of the
pulse essential spectrum hence lies in the right half of the
complex plane and the pulse seems unstable. Physically
this implies that the primary instability of the trivial state
will grow and destroy the pulse. Indeed the positive
solitary pulse of KS equation

Bh Bh 8 h 8 h+4h + + =0 (1)
Bt Bx Bx2 Bx4

with c+ = 1.216, which was constructed in several stud-
ies [8,9], has never been observed in various numerical
experiments [10]. Because the symmetry of the KS equa-
tion to the transformations t ~ t, x ~ —x, and h ~ —h,
there is also a negative pulse with speed c = —1.216
which is an inversion and a reAection of the positive pulse.
In Fig. 1, we place two negative pulses behind two posi-

tive ones with some initial noise between the pulses. All
four solitary pulses are rapidly destroyed.

However, solitary pulses are observed in many active
media. In falling films of reasonable thickness [2], for
example, pulses dominate most of the downstream wave
dynamics. The KS equation describes thin-film waves
at very low fiow rates and Kapitza [11] has noticed that
pulses are not observed for very thin films. However, at
slightly higher flow rates, pulses are commonly observed.
These thicker film waves can be modeled by the general-
ized Kuramoto-Sivashinsky (GKS) equation

Bh Bh 6 h 8 h Bh+4h + +6 + =0
at ax ex2 ax3 Bx"

or the related averaged equations [9]
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FIG. 1. Numerical experiment for the KS equation with
a train of positive and negative pulses. Disturbances are
introduced within the train at time zero. The predicted pulse
speeds c and packet envelopes speeds (x/t) from our theory
are also drawn. The h scale can be measured from the t scale
with a conversion factor of 0.351.
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Aq 6 6 2 1 Bh
Bt 5 Bx 56 Bx3

+ — (q/h) — h +h —q/h)=0,
Dh 6q
Bt Bx

=0. (3)

The speed c+(6) of the GKS solitary pulse family from
[9] is shown in Fig. 2. The speeds of the positive and
negative pulse families of the averaged equations from
[12] are also shown in Fig. 2. in Fig. 3, two positive
pulses of the GKS equation are seen to survive the
initial noise near the back pulse. In Fig. 4, a positive
pulse of the averaged equations is created within a
turbulent spot of noise and escapes unscathed. The
above numerical experiments suggest that solitary pulses
can survive localized disturbances even if their essential

spectrum is unstable. (The point spectra will be shown
to be stable for both equations. ) Localized disturbances
tend to grow into wave packets for such systems as
seen in Figs. 1,3, and 4. The amplitude and width of
these propagating wave packets grow in time as they
are driven by the active medium. When the amplitude
of the wave packet is small, its width and speed can be
determined by the classical convective instability theory
for the trivial state [13]. It is then reasonable that there is
a connection between the stability of pulses to localized
disturbances and the wave packet evolution. We shall
establish this connection here and show that the key is
whether the pulse can escape the expanding wave packet.
This occurs beyond a critical 6 for pulses of both the
GKS and averaged equations. Hence, as long as the
disturbances are small and localized, large-6 pulses in an
active medium can survive even though they possess an
unstable essential spectrum.

Linearizing the equations about the pulse solution h(y)
[and q(y)] in a frame y = x —ct moving with the
pulse speed c, one gets the following equation for the
disturbance H (y, t): BH / Bt —5 H = 0, where —5
B /By + 6(B /By ) + B /By + 4(B/By) (h. ) for the
GKS and the KS equations and
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Xi = c — ——— (2q/h)

By 56 h2 5 By

1 8 8 h+ + 1+ (2q/h )56 By3 by3

+ —+ (q/h)
6
5 By

for the averaged equations where now H is a vector
function representing the disturbances in both h and
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FIG. 2. The speed c+ of the positive pulse for the GKS
equation as a function of 6 with the envelope speeds (x/t)
The growth rate y is positive within the shaded region and the
pulse becomes stable for 6 ~ 0.17. The pulse speeds c of the
positive (1) and negative (2) pulses of the averaged equations
are shown in the lower figure. The negative pulse is always
unstable while the positive pulse becomes stable for 6 ) 0.021.
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FIG. 3. Numerical simulation of the GKS at 6 = 0.5 equation
with two positive pulses. The wave packet envelopes (x/t)
from our theory are also drawn. The conversion factor from
the t scale to the h scale is 0.692.
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FIG. 4. N. 4. Numerical simulation of the. 4. N o the averaged equation at
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where the line = a lies
(4)
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the stationary phase (or steepest descent) technique. For
a given ray ( y /r constant), the behavior of H( y, t) is
determined by the saddle stationary point defined by
(cI/Bn) [nc —cu] = c —Bcu/Bo. = —(y/t). Since
we are in the moving frame y where the pulse is lo-
cated at y/r ~ 0, the pertinent behavior of H(y, l) is
at y/t = 0 dominated by the saddle point n„where
(Bco/Bn) (n, ) = c and instability of the pulse occurs if
Im(n. c —co(n. ) l ) 0.

These conditions can also be derived from the per-
spective of the wave packet in the fixed frame x. Ac-
cording to the classical convective stability theory [13],a
localized disturbance B(x)6(t) on the trivial basic state
will grow into a wave packet in the x frame and the
wave number selected along the (x/t) rays is defined by
(c)co/cln) (n, ) = (x/t) and whether the disturbance will

grow or decay along this ray is determined by the sign
of Im(n. x/t —~(n.)). This is derived from the appro-
priate Fourier integral with a similar stationary phase ar-
gument. Hence the two boundaries of the wave packet
are defined by the rays (x/t)~ where (Bcu/cIn) (n ) =
(x/t) and Im((nx/t) —co(o. )j = 0.

Comparing these conditions to the pulse stability con-
dition at the saddle point n„ it is clear that if the soli-
tary wave speed c is such that (x/t) ( c ( (x/t)+ the
solitary pulse is unstable. Conversely if t- is larger than

(x/r)+ or smaller than (x/l), the pulse is stable. This
then links the stability of a pulse to a wave packet distur-
bance to the classical convective instability theory for a
localized disturbance on the trivial state. While the for-
mer involves expansion with the continuous eigenfunc-
tions and the latter Fourier expansion, the pertinent saddle
points are identical for both cases.

For the GKS, the complex wave number a are defined
by 4n —3i 60. —2n —i (x/t) = 0 for any given x/t.
This complex polynomial has three roots for 6 4 0 and
two roots for the KS limit at 6 = 0. Only one of the
roots corresponds to the true saddle point and we utilize
the classical complex pinch-point analysis method [13] to
determine which is the true saddle point. The growth rate
along this particular (x/t) ray 7 = Imfnx/t —co(n))
is then evaluated at the proper root. The envelope
rays (x/t) are~then defined by y(x/r) = 0. For the
symmetric KS case these values are ~1.622 and they
bound c = ~ 1.216 of both the positive and negative
pulses of the KS equation. In Fig. 1, both c+ and (x/t)+
are shown and it is quite evident that the pulses cannot
escape the expanding wave packet. For the GKS equation
at 6 = 0.5, the envelope rays are (x/r)+ = 0.704 and

(x/t) = —2.728 such that the positive pulse with c+ =
1.709 is now stable while the negative pulse, which is not
shown in Fig. 2, remains unstable. In Fig. 3, the estimates

(x/t) ~ are seen to envelop the growing wave packet while
the positive pulses safely escape their grip as predicted.
A sequence of such calculations provides the (x/t)
curves in Fig. 2 and they indicate that the positive pulse
becomes stable to wave packet disturbances at 6 = 0.17.
The pinch-point calculations and the specification of the
envelope speeds (x/t)~ for the averaged equations are
more complicated and they are reported elsewhere [17].
The final result shown in Fig. 2 indicates the negative
pulse is always unstable while the positive pulse becomes
stable at 6 = 0.021, confirming the numerical simulation
result of Fig. 4 for 6 = 0.05 where it is apparent that
c+ ) (x/t)+
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