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Thermally Induced Fluctuations below the Onset of Rayleigh-Benard Convection
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We report quantitative experimental results for the intensity of noise-induced fluctuations below
the critical temperature difference AT, for Rayleigh-Benard convection. The structure factor of the

fluctuating convection rolls is consistent with the expected rotational invariance of the system. In
agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is
found to be proportional to 1/Q —e, where e —= hT//s, T, —1. The noise power necessary to explain
the measurements agrees with the prediction for thermal noise.

PACS numbers: 47.20.—k, 43.50.+y, 47.54.+r

Bifurcations in spatially extended dissipative systems
are usually discussed in terms of deterministic equations
for the macroscopic variables which neglect thermal noise.
Many such "ideal" systems undergo a sharp bifurcation at
a critical value of a control parameter, where a spatially
uniform state loses stability and a state with spatial vari-
ation appears. However, if noise is present, it will drive
the system to fluctuate away from the uniform state, even
below the bifurcation. As near a thermodynamic criti-
cal point, the fluctuation amplitudes grow as the bifur-
cation is approached because the susceptibility diverges
there. Using the stochastic hydrodynamic equations in-
troduced by Landau and Lifshitz [1], this problem was
considered theoretically over two decades ago [2—4] for
the case of Rayleigh-Benard convection (RBC), which is
the buoyancy-induced motion in a shallow horizontal layer
of fluid heated from below. For RBC the deterministic
model predicts pure conduction until the temperature dif-
ference AT exceeds a critical value AT, . In the presence
of noise, time-dependent fluctuating flows are predicted to
occur even for AT ( hT, They have zero mean, but
their root-mean-square amplitude is finite. This amplitude
diverges at AT, when nonlinear saturation is neglected.
These fluctuations induced by thermal noise were expected
to be unobservably weak because the thermal energy k&T
which drives them is many orders of magnitude smaller
than the typical kinetic energy of a macroscopic convect-
ing fluid element.

In this Letter, we report experimental measurements
of fiuctuations below hT, in a large-aspect-ratio convec-
tion cell [5,6]. Using the shadowgraph technique, we
observed fluctuating convection rolls of random orienta-
tion. Their structure factor consisted of a ring without
significant angular variation. The mean square fluctuation
amplitude was found to increase as e =—AT/AT, —1

approached zero, within experimental resolution propor-
tional to I/Q —e. These experimental results agree with
predictions based on the Navier-Stokes equations with ad-
ditive noise terms [1]. The noise power necessary to ex-
plain the amplitude agrees well with the value calculated
by van Beijeren and Cohen (vBC) [7,8] for thermal noise
with rigid boundaries.

The only previous measurement of thermal fluctuations
in a hydrodynamic system suitable for comparison [9]
with theory of which we are aware is due to Rehberg
et al. [10] and involved electroconvection in a nematic
liquid crystal (NLC). Even though that system is "macro-
scopic, " it is particularly susceptible to noise because the
physical dimensions are only of order 10 p, m and because
the elastic constants, which determine the macroscopic en-
ergy to which k&T has to be compared, are exceptionally
small. In a NLC there is a preferred direction, and thus
electroconvection and RBC belong to different symmetry
classes. The measurements reported here reveal the effect
of the rotational invariance in the horizontal plane of the
RBC system on its fluctuations.

We used a circular cell [11] filled with CO2 at pres-
sures of 28.96, 31.02, and 42.33 bars, held constant to
4-10 bar. The cell height was d = 468 (481) p, m, and
the aspect ratio (radius/height) was 85 (83) at 28.96 (31.02
and 42.33) bars. The top and bottom plates were 0.953 cm
thick optically flat sapphire disks whose temperatures were
held constant to ~0.3 mK. Using interferometry, we
found d to be constant to ~0.15 p, m over the central 80%
of the cell radius. The sidewall was made of paper. The
top and bottom plate temperatures were adjusted so as to
keep their mean fixed at 32.00'C. The density [12] p,
isobaric thermal expansion coefficient [12] n, heat capac-
ity [13] Cp, shear viscosity [14] ri, and thermal conduc-
tivity [15] A are given in [16]. The vertical thermal dif-
fusion time t —= d /tr (tr = A/pCp) was near 1 s, and
typical fiuctuation lifetimes are given by tt = t rp/~E'~

with [17] rp = 0.07. The Prandtl number o. = v/t~ (v
is the kinematic viscosity) was 0.91, 0.92, and 1.04 at
28.96, 31.02, and 42.33 bars, respectively. When hT ex-
ceeded AT„atranscritical bifurcation from the conduc-
tion state to convection in the form of hexagons occurred
[11]. At 28.96, 31.02, and 42.33 bars, we found AT, to
be 23.56, 17.27, and 5.46 ~ 0.002 C, and we changed e
in steps of 8 && 10, 1 X 10, and 4 X 10, respec-
tively. Throughout this paper, length will be scaled by d.

The fluctuating flows were visualized by the shadow-
graph technique [18—20]. The light beam passed through
the cell twice vertically, being reflected from the bot-
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tom plate. Images contained 256 X 256 pixels and cov-
ered an area 2.5 cm X 2.5 cm located in the interior of
the cell. A time series of 128 background images was
taken at AT, —2.0 C at time intervals large compared to
t~. Each of these images was the average of 16 images
taken 0.44 s apart. Here the fluctuations were extremely
weak, but to further reduce their contribution the aver-
age Io(x) of the 128 images was used as the background
image (x is the horizontal position). After this, AT was
ramped up slowly to e = —0.006, where the fluctuations
became large enough to measure. A series of 64 images
I;(x, e) was taken (again each image was an average
of 16 taken 0.44 s apart) at each of many e values for
—0.006 ~ e ( 0. These were used to compute the sig-
nal image

I (x, ~) = fI (x, ~) —Io(x)l/Io(x) .

Before each image sequence at a new e value, the
system was equilibrated for 1 h. The time between
successive images was kept approximately equal to tI so
the measurements were nearly uncorrelated. In obtaining
the amplitude of the fluctuations a small (~20%) @-

dependent correction was made to account for the effect
of averaging 16 images for each final image.

Ideally, for e ( 0, the flow would consist only of
fluctuations. However, imperfections in the cell caused
deterministic flow. Although the imperfections were
extremely small, their relative influence increased as
the bifurcation was approached from below because the
deterministic flow velocity grows as ~e~ ', whereas that
of the fluctuations grows only as

~
e

~

'I . Consequently,
near the transition even a microscopic dust particle can
force flow in the form of concentric rings [11], which
may contribute to a shadowgraph image. In one case,
the sample area of interest contained one or two such
particles, and for ~e~ ~ 10 the fraction of the sample
influenced by them was small. In the parameter range of
interest the velocities are so small that the system is linear.
Thus superposition is valid, and the deterministic signal
could be identified by averaging all the signal images
I;(x, e) taken at a given e. It could then be removed by
subtracting this average from each signal image taken at
that e. Figure 1(a) shows a grey-scale rendition of such
a difference image BI(x, e), for e = —3.0 X 10 . It
reveals some spatial variation in excess of instrumental
noise, but the detailed structure of the fluctuating flow
is hard to discern. Figure 1(b) is a grey-scale rendition
of

~
6 I(q, e) ~, where 6 I(q, e) is the spatial Fourier

transform of BI(x, e). A dark ring is apparent, indicating
that the fluctuations can be considered as superimposed
convection rolls with many different orientations and a
preferred wave number qo. Figure 1(c) is taken barely
above the onset (nominally e = 0). The image shows a
defect-free hexagon pattern [11]. The modulus squared
of its Fourier transform is displayed in Fig. 1(d). Notice
that the hexagon wave number is essentially the same as
the radius qo of the ring in Fig. 1(b).
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FIG. 1. Grey-scale images. (a) Shadowgraph image of fluctu-
ating rolls, at a pressure of 28.96 bars, for e = —3.0 && 10 4.
(b) Square of the modulus of the Fourier transform of the im-
age in (a). (c) Shadowgraph image of a hexagonal pattern, at a
pressure of 28.96 bars, for e = 0. (d) Square of the modulus
of the Fourier transform of the image in (c).

In order to measure the mean square amplitude of
the fluctuations as accurately as possible, we averaged
64 Fourier images of the sort shown in Fig. 1(b), at each
e, to give the structure factor S(q, e) =—(~ BI(q, e) ( ). The
results at several e are shown in Fig. 2. The structure
factor shows no obvious azimuthal variation, and thus
reflects the underlying rotational invariance of the RBC
system [21]. As e approached zero, the rings became
darker, showing that the fluctuations become stronger
as the system approaches the deterministic onset. The
azimuthal average of S(q, e), which we denote S(q, e),
is shown in Fig. 3. Although deterministic contributions
have been eliminated, it still has a smooth e-independent
background Sz(q) due to camera noise and other effects.
Separately at each e, we included S~(q) in fitting the
experimental data for S(q), modeling S~(q) as Bo +
Biq + B2q . The solid lines are fits by the function

S(q, e) =
I

—
~

+ Sz(q), (2)
So (qb

q —
qo

z + I z kqo)

which should pertain [7,22] close to threshold, where the
fluctuating temperature field is expected to be approxi-
mately Lorentzian in q space. The background is shown
as the dashed line. Equation (2), with So, qo, I, and 8;
adjustable, was found to provide an excellent fit to the
data for all pressures and e studied. The factor of (q/qo)
is necessary to relate the shadowgraph signal to the tem-
perature fluctuations as discussed below.

For comparison with theory, the quantity of interest
is the mean square amplitude of BT(x, z, e), the fluc-
tuation in the temperature field, which can be written
as 6T(x, e)0o(z), where the vertical eigenfunction Oo(z)
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integrating the Lorentzian portion of the structure factor
of the shadowgraph signal:

BT (e) = 2mG q 2 dq. (4)
p q —qp2+ I2

For a Lorentzian, the integral diverges. This problem
arises from the truncation involved [23] in calculating
the temperature fluctuations. In their evaluation of the
results of vBC, Hohenberg and Swift (HS) made the
approximation

qdq
(q —qp)2 —I 2

= qo
(q —qp)2 —I 2 (~)

FIG. 2. Grey-scale images of the structure factor for gas
convection in CO2 at a pressure of 28.96 bars at each of four
E values. (a) e = —4.2 x 10, (b) e = —1.6 x 10, (c)
~ = —7.1 x 10-', (d) ~ = —3.0 x 10-'.

is normalized so that its square integrates to unity (see
Eq. A24b of Ref. [21]). For our experimental setup, the
shadowgraph signal BI(q, e) and the temperature fluctua-
tion 6T(q, e) are directly proportional [19,20]:

~1(q, ~) = G
l

—
I

~ T(q, e) .
(q&

(3)
(, qp&

The constant G can be written as 2y(zt)
x qpzt(Bn/BT) (Op(z)), . Here zt is the optical dis-
tance from the cell to the imaging plane, n is the
refractive index of the fluid, the vertical average (Op(z)),
is equal to 0.8892, and y(zt) is a numerical factor which
may be computed [20] on the basis of physical optics,
and which for our geometry is equal to 0.89. Parseval's
theorem then allows the mean square amplitude of the
fluctuations BT (e) —= ([BT(x,e)j ) to be obtained by

(see Eq. A16 of HS) in order to avoid this problem.
Equation (5) can be justified [23] to lowest order in e on
the basis of the exact result of Zaitsev and Shliomis [2].

It is clearly a good approximation at small lel where
S(q, e) has a small width, and making the same approxi-
mation in the data analysis yields

BT (e) = 2' G S q /I . (6)

By making this same approximation, we expect that
corrections of higher order in e will cancel to a large
extent in the comparison with theory. Figure 4 gives the
results for BT (e) obtained from the fitting parameters
using Eq. (6) as a function of e at two pressures. The
solid lines are fits to the data using the theoretical
result BT = A/Q —e. The adjustable parameters were
the amplitude A and AT, . The results for b, T, were
typically very slightly larger (by a few parts in 10") than
the value at which a hexagonal pattern first appeared,
suggesting a slightly premature transition in the presence
of the fluctuations. The statistical errors derived from
the fits were typically a few percent, but we expect that
systematic errors from various sources may increase the
uncertainty of A to somewhere between 10% and 20%.

The amplitudes of the fluctuating modes below but
close to onset were calculated by vBC [7] (Eqs. 9,
10b, and 12b of vBC), using realistic (no-slip) boundary
conditions at the top and bottom of the cell, but they
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FIG. 3. Azimuthal integral S(q, e) of the structure factor
S(q, e) as a function of q for various e at a pressure
of 28.96 bars. O, e = —4.2 X 10; ~, e = —1.6 X 10
X, ~ = —7.1 X 10-', o, e = —3.0 X 10 '.

FIG. 4. The variance BT (e) of the temperature fiuctuations
as a function of e on logarithmic scales. ~, P = 42.33 bars;
0, P = 28.96 bars. The solid lines are fits of BT2(e) =
A/Q —e to the data.
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TABLE I. Comparison of F'" with F'"P'.

P (bars)

28.96
28.96
31.02
42.33

expt

23.56
23.56
17.27
5.46

107FexPt

2.60
2.71
3.60
6.41

107FIh

2.31
2.31
2.48
4.09

did not calculate BT (e) Th.ey did, however, compute
(Eq. 16 of vBC) the quantity 3V —1, where the Nusselt
number 3V is the ratio of the effective conductivity in
the presence of convective fluctuations to the conductivity
in the absence of such fluctuations. As shown by HS,
3V —1 is related to BT (e) by (Eq. 2.12 of HS)

AT, &

aT'(~) = c' '
~
(~ —I),

R, )
with c = 3qpgR, . They also evaluated the results of
vBC for 2l —1 for the case of an infinite system very
near threshold, obtainin

Fth
3V —I = (8)4 —e*

where F'" is a dimensionless thermal noise power given
by

(9)
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