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Chaos in Andreev Billiards
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A new type of classical billiard —the Andreev billiard —is investigated using the tangent map
technique. Andreev billiards consist of a normal region surrounded by a superconducting region.
In contrast with previously studied billiards, Andreev billiards are integrable in zero magnetic field,
regardless of their shape. A magnetic field renders chaotic motion in a generically shaped billiard,
which is demonstrated for the Bunimovich stadium by examination of both Poincare sections and
Lyapunov exponents. The issue of the feasibility of certain experimental realizations is addressed.

PACS numbers: 05.45.+b, 74.80.—g, 74.40.+k

In the development of the understanding of chaos, a
prominent role has been played by the class of classical
mechanical systems known as billiards [1]. In such
systems, particles are confined by a steplike, single-
particle potential to a region of space within which
they propagate ballistically. Unless the shape of the
billiard is highly regular (e.g. , circular), in which case the
system is integrable, the motion of a particle is chaotic.
Unpredictability, the hallmark of chaotic motion, can be
diagnosed qualitatively by the morphologies of Poincare
sections, and more quantitatively by the corresponding
Lyapunov exponents, the positivity of which signals the
exponential sensitivity of trajectories to initial conditions.

A common feature of all versions of billiards studied
to date [1] is that reflection at boundaries is specular;
i.e., only the component of the velocity normal to the
boundary is inverted. We refer to such versions as
conventional billiards (CB's); see Fig. 1(a), left. The
purpose of this Letter is to explore the issue of classical
chaos in a novel class of billiards, which have the property
that scattering at boundaries is retroreflective, i.e., all
components of the velocity are inverted, as is depicted
in Fig. 1(a), right. We refer to such billiards as Andreev
billiards (AB's). Although we are unaware of examples
of such a reflection mechanism in the realm of classical
physics, a well-known example exists in condensed matter
physics: Andreev reflection of electronic quasiparticles
(having energies in the superconducting gap 5) from
the normal-to-superconductor interface [2,3]. Thus, we
envisage AB's as normal (N) domains surrounded by
superconductor (5). It is adequate to regard the motion
of electronic quasiparticles as semiclassical, provided that
the billiard size is much larger than their typical de
Broglie wavelength.

The change from specular to Andreev reflection has a
striking consequence in the context of chaos: Whereas
typical motion in a generically shaped CB is chaotic,
motion in AB's is integrable, regardless of the shape of

the billiard. This integrability becomes evident from the
observation [cf. Fig. 1(a)] that all motion occurs along
chordal trajectories connecting only two points on the
boundary: what system could be less ergodic?
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FIG. 1. (a) Typical trajectories for specular (SR) and Andreev
(AR) refiection at B = 0. The CB (left) is formed by a single-
particle potential, the AB (right) by a pair potential. (b) AR
and SR in a magnetic field. For AR, each cyclotron orbit is
necessarily tangential to the previous one, in contrast with SR.
(c) Geometry of the tangent map. A particle starts from 0 with
velocity vo, follows the cyclotron trajectory across the billiard,
arriving at 1 with velocity vo. Owing to the nature of AR, the
velocity v] after the reflection at 1 is —vo.
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The presence of a magnetic field B substantially alters
the situation [see Fig. 1(b)], giving rise to a Lorentz
force that curves the trajectories r(t) of quasiparticles
according to the equation of motion r' = (q/m)r X B.
Now, Andreev reflection inverts the quasiparticle charge
q, mass I, and velocity r, so that in the vicinity of
the reflection point the acceleration of the outgoing hole
is opposite to that of the incoming electron. Therefore,
in a magnetic field the hole trajectory [dashed line in
Fig. 1(b)] no longer retraces the electron trajectory (full
line) [4], and vice versa, thus allowing the motion to
explore the billiard. This raises the possibility of chaotic
motion, a possibility that we explore in this paper. Our
primary conclusion is that although in zero B AB's
are integrable regardless of their shape, integrability is
destroyed by the application of magnetic field for all but
highly regular shapes.

The study of AB's may provide an interesting link
between two rapidly developing fields: mesoscopic chaos
[5] and mesoscopic superconductivity [6]. The prominent
virtue of AB's, viz. , that they are integrable in zero B
regardless of shape and are rendered chaotic by nonzero B,
makes them attractive from the experimental point of view.
By comparison, the integrability of nanoscale CB's (e.g. ,

in two-dimensional electron gas (2DEG) heterostructures

[5]) is immensely fragile, being readily destroyed by
unintentional shape deformations or surface roughness.
Therefore, to obtain nontrivial chaos in CB s, i.e., chaos
caused by intentional choice of shape, one must use
state-of-the-art nanofabrication technology. In contrast,
an AB prepared without any special attention to shape
will be integrable, nonintegrability of varying degree being
achieved by adjusting an external parameter, viz. , B [7].

To explore qualitatively the implications of a magnetic
field for the integrability of AB's, we focus on a planar
two-dimensional AB in a magnetic field perpendicular to
the plane. We take the dynamics to be classical cyclotron
motion with radius R, (=mv/qB) of —a particle inside
the billiard, supplemented by Andreev reflection at the
boundary. The case of CB's in a magnetic field has been
studied extensively [8,9], and the tangent map [9,10] has
proven to be a convenient approach. A tangent map is
a variant of a Poincare map, in which the state of the
system is monitored only at collisions with the boundary,
the remainder of the motion being obtained by a simple
geometry. Thus, the problem reduces to one of following
the sequence of reflection points generated by the particle
as it explores the billiard.

A priori, our phase space is four-dimensional: two
components of the position in the plane and two conjugate
momenta. Energy conservation constrains the magnitude
of the momentum, leaving one freedom, which (as we are
using the tangent map) we take to be the angle n between
the velocity v and the tangent to the boundary [see
Fig. 1(c)]. In addition, the fact that reflections take place

on the boundary leaves one further freedom, which we
take to be the arclength s along the boundary. Then the
(continuous time) dynamics is replaced by the (discrete)
map: (s, n) &s'(s, n), n'(s, n)), embodying cyclotron
motion followed by Andreev reflection. For the sake of
convenience, we monitor only reflections of quasiparticles
of the same (say, electron) type. [Thus, e.g. , for the
sequence of reflections 0 ~ 1 ~ 2 shown in Fig. 1(a),
only reflections 0 and 2 are used to construct Poincare
sections. ]

First, consider the case of an AB of arbitrary shape at
B = 0. In this case, all trajectories, such as that depicted
in the right billiard of Fig. 1(a), are trivially periodic, and
the Poincare section for a given trajectory reduces to a
single point, completely determined by the initial condi-
tions. We analyze the case of B 4 0 for the example
of an AB in the shape of a Bunimovich stadium [11],as
shown in the top row of Fig. 2. Figure 2 shows Poincare
sections (bottom row) for a selection of initial condi-
tions, along with typical trajectories (top row). For con-
venience, we introduce the dimensionless magnetic field

p —= R/R, ~ B and the tangential momentum p —= cosn.
For the case of a weak field (p = 0.02, left column),
is, p) space is apparently foliated by well-defined curves,
each curve corresponding to a particular initial condition.
Although it appears that the motion is integrable, when
viewed at a finer scale one sees the breakdown of folia-
tion, as shown in the inset. Thus, the motion is in fact
weakly chaotic, as we have also confirmed by examin-
ing the corresponding Lyapunov exponent. In intermedi-
ate fields (for which the cyclotron radius is comparable
to the billiard size), the Poincare sections (except those
in a central region) appear to fill a two-dimensional area
of the (s, p) plane with disconnected points ("dust"), as
shown for the case P = 0.33 in the middle column. Such
behavior is commonly taken as an indication of chaos
[9,10], and thus our Poincare sections suggest that in-
deed AB's are rendered chaotic by the application of mag-
netic field. Notice the scarlike feature running across the
(s, p) plane: it is a remnant of the foliation that domi-
nates in weaker fields. A single, additional, quasi-one-
dimensional Poincare section, corresponding to an initial
condition deliberately chosen in the scar, is also shown.
In strong fields, when the cyclotron radius is much smaller
than the billiard size, particles move along skipping tra-
jectories. On the scale of a typical skip, there is little
distinction between motion over straight and semicircu-
lar segments of the boundary and, therefore, the motion
is less sensitive to the billiard shape. As a result, the
Poincare section exhibits a (partial) reentrance of integra-
bility, i.e., the "dust" that arises in intermediate fields is
reorganized into some structures, as is seen in the bottom
row (for p = 10). This structure bears a certain resem-
blance to that found in weak fields, thus indicating a trend
toward less chaotic behavior. As with CB's [9], chaos is
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FIG. 2. Top row: a typical trajectory for a Bunimovich-stadium —shaped AB (L = R) for three values of the magnetic field:
(a) P = 0.02; (b) P = 0.33; (c) P = 10. Bottom row: Poincare sections in these fields constructed by following the first
1000 bounces for the trajectories starting with no = 10,20', . . . , 170 [cf. Fig. 1(c)] from random points on the perimeter of the
billiard. Thin vertical lines on Poincare sections separate regions corresponding to straight (wider) and semicircular (narrower)
segments of the billiard boundary. In the Poincare sections for the weak field, flat segments result from almost-chordal motion
across a single semicircle. (Only flat regions would occur for a circular billiard. ) Similarly, curved regions result from trajectories
connecting any two of the four distinct segments of the boundary. Inset: segment (indicated by arrow) of the foliation, magnified
(x X —10; y X —50). Ticks on the stadium boundaries mark the points s = 0; filled circles indicate the start of trajectories so. We
choose units in which the billiard perimeter is unity.

most pronounced for intermediate fields, becoming less
pronounced in both the weaker and stronger field regimes.

To provide quantitative support for the suggestion of
chaos inferred from the inspection of Poincare sections,
we now turn to the computation of Lyapunov exponents,
which characterize the rate of exponential divergence
of trajectories having initial conditions nearby in phase
space. This is accomplished by investigating the stabil-
ity of the tangent map via the adaptation to AB's of
the method of Refs. [9,10]. Consider the situation de-

picted in Fig. 1(c). From the kinematics of circular mo-
tion we have v'0 —cv, x r1 = vo —cv, x ro, where
co, = qB/m and ro i are the radius vectors of the re-
flection points; other notations are defined in Fig. 1(c).
The tangent map is derived by varying this equation with
respect to s and p, and relating the deviations of two
nearby trajectories 6q (=(Bs, Bp)) before (Bqo) and af-
ter (Bqi) reflection from point 1: Bqi = 2 i oBqo. After
some straightforward algebra, we find that 2~ o is given
by

r R, o-(X)
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where p01 are the radii of curvature of the billiard bound-
ary at the reflection points 0 and 1, o (P) =—sin~|i, and X
is defined in Fig. 1(c) [12]. After N bounces, the separa-
tion Bq~ is determined by the matrix E~ o = g i 2 j ~

The largest Lyapunov exponent associated with a given tra-
jectory is calculated as A = lim~ A~, where

A~ = N ' In ~Tr X~o/2~ + (Tr 2~o/2) —1

We have calculated the Lyapunov exponents for a wide
selection of initial conditions iso, po) and values of 8 A.
typical sequence A& is shown in Fig. 3. The convergence
of A~ to a nonzero value as W ~ ~ provides evidence
for the exponential divergence of nearby trajectories, i.e.,
chaos.

We now turn to the issue of possible experimental real-
izations of AB's. In one possible scheme, an AB is formed

by surrounding a 2DEG with a superconducting contact
[13]. The chaotic nature of the motion can be diagnosed
either by passing normal current through the structure and
measuring the conductance, as with nanoscale CB's [5],
or by studying, e.g. , via scanning tunneling microscopy
(STM), correlations in real and energy space, which pro-
vide signatures of classical chaos at the quantum level
[14]. The primary demand on the experimental realiza-
tion of all billiards, including AB s, is that the motion of
the electrons inside the billiard be ballistic. Our analysis
of Poincare sections and corresponding Lyapunov expo-
nents shows that when R, —L —R, chaos is established
after a few bounces, and thus it will not be masked by im-
purity scattering provided that I., R «4„where 4, is the
elastic mean free path of the W region. On the other hand,
B should not exceed the (lower) critical field of the super-
conductor B, and, hence, R, ~ R, '" = pF/eB„where
pF refers to the W region. Thus, it is sufficient to have
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FIG. 3. Lyapunov functions A~ [logarithmic scale; see
Eq. (1)] vs number of bounces N for (b) p = 0.33; (c)
P = 10. The associated trajectories are shown at the top of
Fig. 2. For P = 0.02 (not shown) we find A = 0.002.

8, ~ R, '". Taking parameters for the Nb/InAs
structure studied recently (density of electrons
n, = 9 X 10tt cm 2, Ref. [13]; B, = 2000G), we
obtain 8, ~ 0.6 p,m, which is accessible via current
nanofabrication technologies. (In fact, 8, = 0.75 p, m
in Ref. [13].) A drawback of the scheme described
above is that the superconductor and the 2DEG are met-
allurgically distinct, and thus the probability for normal
scattering at the interface is nonzero, at the expense
of the Andreev reAection, which results in billiards
having a mixed AB-CB character. This drawback can
be eliminated by employing the proximity effect. The
AB is formed in a region of a superconductor where
the superconductivity has been suppressed, either due
to the vicinity of a normal metal island (see Ref. [15]),
or (with a type I superconductor) by the application of
a magnetic field, which creates domains of N phase.
As such a scheme eliminates metallurgical boundaries
between N and S, reflection is of purely the Andreev type.

An interesting direction of further research would be to
explore the quantum mechanics of ABs. At least three
directions are immediately apparent: (i) spectral geometry
and the Weyl-Kac problem; (ii) energy-level statistics,
random matrix approaches, and universality; and (iii)
spatial structure of quasiparticle wave functions.
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