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Structure of Binary Quantum Clusters
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Fourier path integral Monte Carlo simulations are used to demonstrate that in isotopically mixed
clusters mass differences can lead to a purely quantum analog of classical binary phase separation. A
parametric multistage sampling method is developed to simulate such systems, and results are presented
for the strongly quantum mechanical p-H2/o-D2 and the quasiclassical Ne/ Ne binary clusters.

PACS numbers: 36.40.—c, 61.20.Ja, 64.75.+g

The analog of the bulk melting transition in clusters
has attracted considerable attention and led to a better
understanding of phase transitions and thermodynamics
in small, finite systems [1,2]. The cluster equivalent
of phase separation in binary fluids has been recently
investigated using classical simulation methods [3] and is
found to be significantly modified in a finite cluster by the
presence of a free surface and the small system size.

In this Letter, we examine a purely quantum analog of
the species segregation phenomenon observed in classical
binary clusters. An isotopic mixture of particles A and
B will appear to be homogenous when the equilibrium
properties are examined in the classical limit. The extent
of quantum delocalization will, however, depend on the
particle mass and result in different effective interaction
potentials being perceived by the two species. This is ex-
emplified by the different zero-point energies and mean
pair separations of the A-A, A-B, and B-B dimers. As
a consequence, a quantum isotopic mixture will display
many of the characteristic features of a classical binary
mixture. Decreasing quantum delocalization with increas-
ing temperature will act, in addition to the usual entropic
factor, to promote mixing with a rise in temperature. Iso-
topic quantum mixtures have been previously examined in
the context of low temperature He- He mixtures; for ex-
ample, He impurity states in He films and clusters [4,5].
In this Letter, we consider isotopically mixed Lennard-
Jones (LJ) clusters. Particle masses, potential parame-
ters, and temperatures are chosen to ensure that effects
due to quantum mechanical exchange of identical particles
are negligible. Quantum effects associated with different
isotopic species are then indexed by the thermal de
Broglie wavelength relative to the Lennard-Jones length
parameter tT, AT = $62/rnkTrr2, at the same reduced
temperature kT/e where e is the well depth parameter.

Consider an isotopically mixed cluster of nz and nz
particles of masses nz& and mz, respectively, such that
n = nz + nz. If mz ~ mz, then quantum delocalization
effects will be greater for species A than for B and ef-
fectively reduce the strength of the A-A pair interactions
relative to the A Band 8 Binteractions (-cf. zero-p-oint
energies of dimers). Consequently, one would expect
a higher concentration of the more massive (or more

strongly bound) species towards the cluster interior. Such
behavior is analogous to that of classical LJ binary
clusters with Egg ~ E'gag ~ 6pgg and ops ~ ogpu ~ opp,
which are expected to form "spherically coated" clusters
[3]. Structural parameters for monitoring the segregation
of the two species into surface and core sites are defined
here. The radial density profiles d~(R) and dB(R) are de-
fined as the probability of finding a particle of species
A or B, respectively, at a distance R from the center of
the cluster. The average radii of the two subclusters R~
and Rtt are defined as f Rdq(R) dR and jRdti(R) dR,
respectively. Two particles are classed as nearest neigh-
bors if they lie within a distance of 1.5', and the average
number of nearest neighbors is denoted by N. The aver-
age number of nearest neighbors for particles of species A

(B) is N~ (Nti); clearly if species A is concentrated in the
core, then N~ ~ N~. The number of nearest neighbors
of a given particle of species A (B) which belong to the
same species A (B) is a measure of local homogeneity and
is labeled f~ (ftt). Additional segregation parameters p,
and v are defined as p, = n~R~ —Rtt~/(n~R~ + ntiRtt)
and v = n~f~ —ftt~/(n~f~ + nttfp). In the classical
limit, as well as when m~ = m~, both p, and v must
be zero.

To simulate quantum clusters at finite temperatures, a
Fourier path integral Monte Carlo (FPIMC) scheme with
partial averaging is used (see Refs. [6—8] for details).
The Monte Carlo variables are the spatial coordinates of
the particles x and an auxiliary set of Fourier coefficients
a. The partition function Q for the quantum system
can be written as Q = jdx da exp[ —S(x, a; p, m~, mtt)),
where 5 is the Euclidean action associated with the
cyclic quantum path defined by x and a. 5 depends
parametrically on the inverse temperature, P = I/k&T,
m~, and m~. When A and B are distinct species,
it is necessary to attempt occasional MC moves that
interchange the quantum paths of particles of different
mass to equilibrate the system efficiently. Such path
swapping moves are accepted relatively frequently when
Atn = ~mtt

—m~~ is small, but for large Am these moves
have nearly zero acceptance probability.

A MC procedure is described for systems where mz and
m~ are such that path swapping moves have a negligible
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acceptance ratio at a given p. In such situations, a
reference system must be defined that is identical to the
original system in all respects except that the particle
masses m~ and m~ are chosen so that equilibration
using path-swapping moves is possible. A set of NR
configurations, XR = (x, a], are stored from a FPIMC
simulation of the reference system. Now consider a
FPIMC simulation of the system of interest with the
parameters p, m~, and mii. Let X be the kth configu-
ration in the Markov chain generated by the standard
Metropolis procedure. After these k steps, let X~ be a trial
configuration randomly selected from the stored reference
distribution; such a trial move will be termed a jump
move. Since XR belongs to the reference distribution with
a weight proportional to e R~ '~, the transition matrix
element for a jump move going from X to X~ is given
by T(X~XR) = e '~ ') where Sg(X) is the Euclidean
action of configuration X in the reference distribution.
The transition probability for the reverse move is given
by T(Xff~X) = e '~ ). With this choice of transition
probabilities and maintaining the detailed balance condi-
tion, it can be shown that a jump move must be accepted
with probability, p = min(1, q(X~X~)i where q(X~X&) =
[e s~(x) e s(x~)]—y[e s~(—x~) e s(x)]—] Thus—, standard MC
moves combined with occasional jump moves can be
used to equilibrate the system of interest. In general, it
may be necessary to consider one or more intermediate
distributions i with parameters m~, mf'i, and p as bridging
distributions between the reference system and the actual
system. To summarize the above MC procedure, a simple
parametric shift is used to generate a relatively ergodic
reference distribution; the less ergodic system of interest
may then be equilibrated by coupling or latching on to
this reference distribution. This procedure has therefore
been termed "parametric multistage sampling" in the
remainder of this Letter and is conceptually similar to the
jump-walking algorithm [9].

Two specific Lennard-Jones systems have been chosen
for the simulations: (i) para-H2/ortho-D2 and (ii) Ne/

Ne isotopically mixed clusters. The Lennard-Jones pa-
rameters for neon are e = 35.6 K and cr = 2.745 A. At
low temperatures, p-H2 and o-D2 molecules occupy the
J = 0 rotational state and can be treated as spinless bosons
with isotropic interaction potentials. The effects of iden-
tical particle exchange are unimportant above 2 K [10].
For pure p-H2 and o-D2 clusters, a Lennard-Jones poten-
tial (e = 34.2 K, o. = 2.96 A) is found toreproduce quite
well the PIMC results obtained with the more accurate
Silvera-Goldman potential [9,11]. Therefore at low tem-
peratures, p-H2 and o-D2 clusters can be treated as atomic
LJ clusters with atomic masses of 2 and 4, respectively.

In all the simulations reported here, the overall accep-
tance probability in the MC runs was =0.5 and the run
lengths N~c were 10 . At 2.5 K, 16 Fourier coefficients
per degree of freedom for neon and 24 for the p-H2/o-D2

clusters were required to ensure adequate convergence.
Acceptance ratios for path swapping moves were =0.5
for the Ne/ Ne system even at 2 K.

Path swapping moves had virtually zero acceptance
probability for (p-Hz)„(o-Dz) clusters in the temperature
range from 2 to 6 K; it was therefore necessary to use
the parametric multistage sampling method. At 2.5 K, the
reference system had mz = 2.7 and m~ = 4.0 amu with0 0

10% acceptance probability for path swapping moves; the
stored distribution had 10 configurations. An intermedi-
ate distribution with m~ = 2.3, m~ = 4.0 amu was then
equilibrated by attempting jump moves with a probability
PJ = 0.05. The total number of jump moves accepted
was kept less than 70% of the number of stored configu-
rations. 10 configurations were stored from this simu-
lation and used to equilibrate the final system of interest
(m~ = 2, mii = 4) with PJ and aj values of 0.025 and
0.12, respectively. At 5 K, the initial reference distribu-
tion parameters were m~ = 2.2, m~ = 3.3, and the inter-
mediate distribution had parameters m~ = 2.0, m~ = 3.5.

Results are first presented for the simplest scenario of
a single impurity atom in a cluster since it provides valu-
able insight into the mass segregation process. An effec-
tive potential V,ff (R) experienced by a tagged atom i at
a distance R from the center of the cluster is defined as
V,ff(R) = (g/&; v;j) where ( . ))vie denotes the average
over the MC run, v;~ is the pair interaction between the
tagged atom i and any other atom j, and atom i is con-
strained to lie between R and R + AR. Two cluster sizes
were considered, A(o-D2) I2 and A(o-D2), 7, where the fic-
titious impurity atom A was an isotope of mass mz = 3
or 5 amu. These choices of mz serve to exemplify the
qualitative difference between light and heavy impurities
and allow for equilibration using path swapping moves at
2.5 K. Figure 1(a) shows that V,ff(R) decreases with R
rejecting the increase in the number of nearest neighbors
in the interior of the cluster. The detailed structure of the
V ff (R) curve reflects the overall cluster structure. Fig-
ure 1(a) shows the V,ff(R) curves only for m~ = 5; the
curves for mz = 3 were very similar and are therefore not
shown. It should be noted, however, that for m~ = 3,
V,ff(R) could be determined reliably only for R greater
than 5 bohr; statistical errors in the effective potential for
regions where d(R) is small tend to be large and are not
plotted in Fig. 1(a). In contrast, Figs. 1(b) and l(c) show
the dramatic difference between density profiles, dq(R) for
the light and heavy impurity. This behavior can be quali-
tatively understood by considering a single quantum parti-
cle in the one-dimensional effective potential; the heavier
the quantum particle, the more localized it will be in re-
gions of low potential energy. To study the effect of differ-
ent n:m ratios, three sets of (p-Hz), (o-Dz) clusters with
n + m = 18 were simulated using the multistage sam-
pling procedure described previously. The results, along
with those for (o-Dz), s and (p-H2), s, are shown in Table I.
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FIG. l. Isotopic impurity A of mass mz in an (o-Dz)„cluster.
(a) Effective potential, V,«(R), experienced by an isotopic
impurity in the A(o-Dz) ~z and A(o-D, ),z cluster with mq = 5.
Note that V,«(R) values for R such that dz(R) is very small are
not shown. (b) Radial density profiles, d(R), for mq = 3 and
5 amu in an A(o-Dz), z cluster. The dotted line corresponds to
the density profile for the o-D& subcluster when m~ = 5 amu.
(c) Radial density profiles, d(R), for m~ = 3 and 5 amu in an
A(o-Dz) ~z cluster. The dotted line corresponds to the density
profile for the o-D2 subcluster when m~ = 5 amu.

The preponderance of p-H2 molecules on the cluster sur-
face is clearly shown by the density profiles in Fig. 2 as
well as by the structural parameters given in Table I [12].
Note that (p-Hz)9(o-Dz)& was simulated at both 2.5 and
5 K; while the cluster is visibly less structured at 5 K, the
segregation effect is striking at both temperatures. To pro-
vide a comparison, quasiclassical simulations at 5 K using

FIG. 2. Radial density profiles, d(R), for the two isotopic
species in (a) (p-Hz)o(o-Dz)& at 2.5 K. (b) (p-Hz)5(o-Dz)»
at 2.5 K. (c) (p-H, )&(o-Dz)o at 5.0 K.

a quadratic Feynman-Hibbs potential [13] for (p-Hz)9(o-
Dz)9 provided RA = 1.32o. and Rs = 1.48o and NA = 7
and Np = 6, where m~ = 4 and m~ = 2 amu. It would
appear that such approximate simulations capture the basic
species segregation effect but not the full extent of quan-
tum delocalization. Consequently, it is interesting that the
quasiclassical simulation for the 55-particle (p-Hz)4z(o-
Dz), 3 cluster gives R~ = 1.76o. and Rii = 2.1o., indicat-
ing that binary phase segregation effects are expected to be
significant for clusters of 50 atoms or more.

Neon clusters may be taken as representative of a range
of quasiclassical systems. At 2.6 K (kT/e = 0.073) the

TABLE I. Total energy, (E), and structural properties of the (p-Hz)„(o-Dz) clusters. Error bars for structural quantities and (E)
are + 2% and ~1.5e, respectively.

T (K)

2.5

5.0

mg

2
4
4
4
4

mp

2
4
2
2
2

9
9
9

13
9

(E)/e
—12.8
—22.5
—17.6
—19.6
—15.3

Rg/o-

1.51
1.38
1.26
1.28
1.28

Rs/rr

1.51
1.38
1.60
1.70
1.71

0
0
0.24
0.30
0.29

4.0
5.6
6.0
5.9
5.1

Np

4,0
5,6
3.8
3.6
3,2

1.9
2.7
3.7
4.7
3.0

1.9
2.7
1.4
0.5
1.1

0
0
0.56
1.17
0.92
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FIG. 3. Radial density profiles, d(R), for the two isotopic
species in ( Ne)9( Ne)9 at 2.6 K.

TABLE II. Structural properties of the neon cluster
( Ne) 9(22Ne) 9, as a function of temperature. The results
at 2.6 K marked with an asterisk are from a classical MC
simulation. Error bars are ~2%.

T (K) N Ng Ntt fp ftt R~/o Rs/o. p,

2.6
5.2

10.4

6.9 6.8 6.9 3.2 3.2 0.0 1.20
6.8 6.6 7.0 3.0 3.5 0.133 1.30
6.8 6.7 6.9 3.1 3.3 0.063 1.28
6.0 6.0 6.1 2.8 2.9 0.035 1.3

1.20
1.23
1.25
1.3

0.0
0.055
0.024
0.014

10% difference in isotopic mass between Ne and Ne
leads to AT values of 0.351 and 0.335, respectively, which
may be compared with those for p-H~ (AT = 1.05) and o-
D2 (AT = 0.74) at the same reduced temperature. While
segregation effects are not as striking as for the p-H2/o-Dz
clusters, the results presented in Fig. 3 show that even in
a quasiclassical system, a small mass difference can lead
to well-defined structural changes. The relatively large
difference in density profiles for the two species in the
region from 2 to 4 bohr was reproducible in independent
simulations. Results in Table II also indicate that mass
segregation effects decrease with temperature.

To conclude, it has been demonstrated using FPIMC
simulations that quantum delocalization effects are suffi-
cient for isotopically mixed clusters to display a purely
quantum analog of the phase separation observed in clas-
sical binary clusters. A parametric multistage sampling
method for simulating binary quantum mixtures has been
developed. Using this technique, it has been shown that
while mass differences lead to pronounced structural con-
sequences for strongly quantum p-H2/o-D2 mixed clus-
ters, the effects are significant even in a quasiclassical

Ne/ Ne mixed cluster. It is evident from the results
that mass effects will play as significant a role as relative
binding energy or size in a variety of quasiclassical and

quantum binary systems such as H2/He and He/Ne mix-
tures. Experiments on He„-SF6 suggest that these effects
may be observable for the p-Hz/o-D2 clusters [14,15].
For example, the introduction of a suitable chromophore
(such as SF6) in a pure p-H2, a pure o-Dz, and a mixed
cluster should indicate whether the interior of the cluster
consists of primarily one isotopic species. Alternatively,
since homonuclear diatomics are Raman active, perturba-
tion due to the chromophore can be avoided by using Ra-
man spectroscopic techniques for clusters [16].
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