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Symmetry Breaking Instabihties of an In Vitro Biological System

Ken Sekimoto
I'ukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

Naoki Mori
Department of Applied Physics, Nagoya University, Nagoya 464-01, Japan

Katsuhisa Tawada
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan

Yoko Y. Toyoshima
Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Tokyo 153, Japan

(Received 17 December 1994)

Spontaneous rotation and flapping oscillations of an actin filament driven by myosins have been
observed in the in vitro setup of a quasi-two-dimensional motility experiment, where the head of
the filament is spatially fixed. We present a simple phenomenological dynamical model that exhibits
both the rotation and the oscillation of the filament as symmetry breaking instabilities of the filament
conformation under pertinent boundary conditions.

PACS numbers: 87.45.—k, 02.30.Jr, 87.22.Jb

From the viewpoint of nonequilibrium dynamics, there
are many biological systems of interest which fall into
the category of systems of coupled active elements For.
systems of this type, the origin of nonequilibrium motion
is built into each of these elements, but the coupled nature
of the system often gives rise to new dynamical behavior
which is not inherent in the individual elements.

In this Letter we consider as a representative of such
systems a system consisting of a filament (either actin or
microtubule) and many motor proteins (myosin, kinesin,
or dynein) in the presence of an ATP solution. Many
experiments have been done on this system using an
in vitro setup [1], where the protein motors are firmly
attached on the surface of a glass plate. These motors
cause a directed sliding motion of the filaments with
which they come into contact. Although the actual
active elements are the protein motors, it suffices for our
purpose that we regard a filament as a continuous train of
(effective) active elements, each of which tends to move
along the tangential direction of the filament.

We shall focus on one phenomenon which is observed
in the in vitro setup, but does not usually occur in
actual in vivo biological systems. Here, the head of
the filament is somehow pinned at a point on the glass
plate, and the filament exhibits either rotation or Aapping
oscillation [Figs. 1(a) and 1(b)]. Our qualitative picture of
this phenomenon is the following. (i) The driving force
exerted by the active elements is accumulated along the
filament, inducing a buckling instability of the otherwise
straight filament [2]. (ii) The filament is thus bent, and
a part of the motile force acts to displace the filament
around the head. (iii) Different types of motion of the
filament stem from different types of boundary conditions.
Experimentally [3], a rotational motion is observed when

the head of the filament is pinned down on the substrate
and is free to rotate. We shall call the head in this case a
torque fvee head-. On the other hand, a Ilapping motion is
seen when the filament is pinned a short distance from the
head, at the "neck." The portion ahead of the pinned site
is stretched, maintaining its orientation [4]. Hereafter, for
simplicity we shall call this pinned neck the oriented head
and ignore the portion ahead of the pinned point.

FIG. 1. Consecutive video images of the in vitro motility
experiment [3]: The pinned actin filaments (thick dark curve)
undergo either rotation [series (a)] or Ilapping oscillation [series
(b)]. The time intervals between consecutive images are (a):
0.2 sec and (b): 0.4 sec. The white bar corresponds to 1 pm.
In series (b), a part of the filament is ahead of the pinned point
and is stretched (the upper right portion). This portion fixes the
tangential direction at the pinned point of the filament.
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We should note that in referring to the two-dimensional
nature of the present system we are not referring to
the background on which active elements are arrayed
and mutually coupled, but rather to the spatial degrees
of freedom assigned to each of these elements along
the filament. In this context it is interesting to relate
the spatial symmetry breaking of the system to the
instabilities corresponding to Figs. 1(a) and 1(b). First,
in the case of a torque-free head, the state of a straight
filament with a specific orientation already breaks the
orientational symmetry of the system. This implies the
existence of a Goldstone mode in the linear stability
analysis around the state of a straight filament. We fix
the orientation of the reference straight filament either
by arbitrarily choosing the "phase angle" (in the case of
a torque-free head) or by aligning along the orientation
of the head (in the case of an oriented head). There
still remains the mirror symmetry with respect to the
line defined by the straight filament. This symmetry is
finally broken by the buckling mentioned above. As we
will show later, the presence of the Goldstone mode in
the case of a torque-free head leads to an (nonaccidental)
instability of codimension 2 [5].

Our phenomenological model based on the picture
described above consists of three simple ingredients:
the bending rigidity of the filament, the passive friction
between the filament and substrate, and the active motile
force working along the filament. We will show that, in
our model, both types of motion depicted in Fig. l are
evidently inferred from the linear instability of the steady
state of a straight filament [6].

We describe by r (s, t), with 0 ~ s ~ 8, the conforma-
tion of a filament at time t. The argument s is the ma-
terial coordinate defined as the arc length measured from
the tail when the filament is free from stress. The bound
8 is thus the natural length of the filament. We denote
by r(s, t) the unit tangent vector of the filament at r (s, t),
i.e., 7. = ~r '~ 'r', where r ' —= Br/Bs. Ignoring the in-
ertia effect, we propose the following equation of motion:

Br 6(Hp + Hp)
(gll 7.7 + gi [1 7 7 ]) . —=-

At 6r
+ for, (1)

where 1 is the unit 2 && 2 matrix, and f.r" is a dyadic. The
left-hand side of (1) is the frictional force with the phe-
nomenological friction constants pl and g~ corresponding
to longitudinal and transversal sliding motion, respec-
tively. The frictional force originates from the repetitive
attachment-detachment processes of protein motors with
the filament [7]. The first term on the right-hand side
represents the elastic forces in the filament, where H~
is the bending energy [Hp = (B/2) fo ds~Br/Bs~ with
a bending modulus 8 (~0)], and Hp is the longitudi-
nal compression energy [Hp = (E/8) fo ds (~r '~ —1)
with E ()0) being Hooke's constant]. We will eventually
take the limit of incompressibility, F. : ~, in which the

longitudinal stress crll defined by B(o.
ll r)/Bs = B—HE/6r

becomes an equivalent of the Lagrange multiplier corre-
sponding to the incompressibility constraint. The detailed
form of H~ is, therefore, unimportant. It is only impor-
tant that it prefers the stress-free state

~
r '~ = 1. In the last

term on the right-hand side, fo ()0) denotes the motile
force along the filament [~~ r(s, t)] directed toward the head
(s = 4). The velocity dependence of the motile force is
ignored for simplicity. That this force is directed along 7.

is a plausible but unproven assumption. It is at least con-
sistent with experimental data (see discussion in the con-
cluding paragraph).

The boundary condition at the tail (s = 0) results from
the requirement that the variation 6(Hp + Hp) vanishes
with respect to both the translational variation Br (0, t)
and the orientational variation Br(0, t) This .boundary
condition can be shown to become ~i'(0, t)~ = 1 and
(1 —7r) 8 r/Bs = Br/Bs = 0. We assume that the
(pinned) head is at the origin r(Z, t) = 0. For the torque-
free head, we require (1 —rr) . 8 7/Bs = 0 at s = 8,
while for the oriented head we assume that the head is
oriented in the positive x direction; 7 (8, t) = (1,0) in
Cartesian coordinates.

Next, we introduce the straight steady state for which
we analyze the linear stability. We assume that in
the steady state the filament lies along the negative x
axis as r(s, t) = (ro(s), 0), with ro(Z) = 0. The filament
is compressed from its natural length by the motile
force, that is, —Z ~ ro(0) ( 0. We can derive the
expansion of ro(s) in terms of 1/E as ro(s) = 1—
E 'fos + O(E ), for 0 ~ s ~ 8. In order to obtain
the linearized equations of motion, we substitute the
expression r(s, t) = (ro(s), 0) + (ull(s, t), u~(s, t)) into
(1) as well as into the pertinent boundary conditions. Up
to O(u~) we obtain in the E .- ~ limit [8]

BHg 8 Bg 8 Hg
4 2

8 —fos —z, 0(s&8, (2)
Bs Bs

together with the boundary condition either

Lt~ 8 Lfg Qg

8$2 &$3 Bs
= ug(Z, t) =

s=O s=O

for the torque-free head, or

Ltg 8 Llg
2 3

s=O s=O
= ui(Z, t) =

BS s
=0

(4)

for the oriented head. For u~j we have the following
»mple diffusion equatio n: ~ll(&/&t)ull = E(& /» )ull +
O(E ). This equation is irrelevant to the present stability
analysis. The factor fos on the right-hand side of
(2) refiects the fact that the destabilizing tendency is
enhanced near the pinned head, where compressive stress
is the largest. If we were to remove the s dependence
introduced by this term, (2) would reduce to the usual
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equation encountered in the buckling problem of rods in a
viscous background [2].

By writing u~(s, t) = exp[A(t/r)] t/I(s/Z) with 7. =
/zan" /B, the stability problem is reduced to the following
eigenvalue problem: AP(x) = —P""(x) —

pxP "(x) for
0 ( x ( 1, where P"(x) —= 8 P(x)/ }tx, etc. , and p, —=

foZ /B is the single dimensionless parameter of the model
in the limit E

In the case of the torque-free head, we have from (3)
P"(0) = P"'(0) = P(1) = P"(I) = 0. There always
exists a zero eigenvalue At} = 0 of the above equation
corresponding to the Goldstone mode Po(x) = x —1.
With this exception, all the eigenvalues are negative for
p, ( p, '," = 30.6. As p, is increased beyond p, ',", a
single eigenvalue becomes a real positive number. We
can prove, however, that at p, = p, '," the only nontrivial
solution of the equation 0 = —P""(x) —p, ",otxg"(x) is
~ Po(x) [9]. According to the theory of linear algebra,
this implies that there exists a function Po(x) which,
together with Pt}(x), defines a so-called generalized
eigenspace of the eigenvalue At} (= 0) at the threshold
p, = p, ',". Pt}(x) must satisfy —@t')"' —p, ',"x@(')'(x) —=

Po(x) for 0 ( x ( 1 under the boundary condition
Pt'}'(0) = Po"(0) = @o(1)= @t'}'(I) = 0. Using the
formal power series expansion @t}(x)= g„oc„x",
we can obtain implicit but analytical expressions
for p, '," and Pt}(x). The inset of Fig. 2 shows the
forms of @o(x) and Pt}(x). In particular, the value
of p, '," is shown to be a real positive root of the fol-
lowing equation of p, : g„t}(—1)" '[(3p + 3)!]
X[3 +'(p + 1)! —Q„o/3(p —k) + IHp, = 0.

We can infer the behavior of u~(s, t) slightly beyond
the threshold p, ~ p, '," by ignoring all the fast-decaying
modes. Putting u~(s, t) = uo(t)Po(s/8)+ vo(t)Po(s/8),
we propose the following weakly nonlinear equation for
small t/r:

Qp 0
7

&p

1 Rp
(5)

where e ~ p, —p, t}" and P() 0) is a constant. The
linear terms in (5) come from the linear analysis, while
the lowest order nonlinear term is constructed so as to
satisfy the symmetry properties of the fully nonlinear
equation (I) [10]. Equation (5) has a solution u+(s, t) =
(e/P) ~ [(t/'r)gp(s/8) + Pp(s/8)]. Figure2 shows the
motion of the filament described by this expression.
Although the rotational symmetry is not fully retained in

(5), this solution implies that the filament rotates around
the fixed head at an angular velocity (e/P)' /r without
changing its shape pt}. The overall amplitude (e/p)'tz is
somewhat exaggerated in the figure.

In the case of an oriented head, (4) implies the
boundary conditions P"(0) = P'"(0) = P(1) = P'(I) =
0 for the eigenvalue equation appearing above. We
found that in this case a Hopf-type instability occurs
at p, = p, '," = 75.5. The threshold eigenvalues are
A = ~A, i, with A, = 193.1. These numerical values
can be obtained by solving the discretized version of
the eigenvalue problem. At the threshold, the critical
eigenfunctions are a pair of complex conjugate functions,
which we denote PIt(x) and PH(x). In the inset of Fig.3
we show the profiles of the real part Re(gtt) and of the
imaginary part Im(PH). Taking account of only these
slow modes for p, ~ p, ',", we assume the expression
u~(s, t) = uH(t)PH(s/8)+ u (tH)*P (H/4s) and propose
the following weakly nonlinear equation:

$0(s) Ryg
7 0}

&H

E' + tA~
0

0
e —iA,

tt0(8)

FIG. 2. The rotation of the filament (the solid curves) is
constructed from the functions Po(s) and @o(s) (see inset)
representing the marginal modes at the instability threshold of
the system with a torque-free head (marked by H). The time
increases from I to 6 with the interval 0.097 (7. =

/zan

/B).

IuH I uH
(6)

Iutt I'uH

where e ~ p, —p, ,'" and P ()0) is again a con-
stant. Equation (6) has the oscillatory solution
uH(t) = (e/P)'~ e' "~'. The time evolution of
2Re[utt(t)PH(s/8)] obtained from this equation is shown
in Fig. 3. The magnitude of e/P is again somewhat
exaggerated. This weakly nonlinear solution exhibits the
essential feature of the observed fiapping oscillation [see
Fig. 1(b)].

Before discussing what our theory can contribute to the
knowledge of biophysical systems, we should note that
the oscillatory instability in the case of a torque-free head
is that related to the so-called codimension-2 bifurcation
[5]. In order to see this, we have reexamined the above
equation AP(x) = —P""(x) —pxP"(x) for 0 ( x ( 1

using the slightly generalized boundary condition P"(1) +
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o-
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H

FIG. 3. The Ilapping oscillation of the filament (solid curves)
is constructed from the functions Re[ftt(s)] and Im[QH(s)]
(see inset) representing the marginal modes at the Hopf-
type instability threshold of the system with an oriented head
(marked by H) The time . increases from 1 to 6 (and then to
1) with the interval 1/6 of the period of oscillation, 27rr/I). ,
(fl, = 193.1).

lar frequency at the threshold, co,"', is given by 0,/r =
193.18/(gal ) = (1.5 —2) && 10 g~

' sec '. Since we
have no data for co,"', we adopt as a tentative estimate
the experimentally observed angular frequency of Aap-

ping motion, —5 sec ', beyond the instability threshold.
We thus have a rough estimate of g~ = (3—5) X 10
dynsec/cm . It may not be counterintuitive to assume
here that g~ is larger than P~. Then our crude estimation
leads to the following interesting conclusion: g~~

= g~ for
the in vitro experiments. This conclusion implies that,
in the absence of pinning, strongly anisotropic, that is,
quasi-one-dimensional, sliding motion of the filaments is
controlled not by the anisotropic friction, but by the motile
force which each protein motor knocks to exert along the
filament. We also note the simulation of (1) with g~~

= g~
reproduces the observed in vitro motion of the filament
quite well [6].

One of the authors (K.S.) is grateful to H. Kozono,
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image analysis of the experimental data. This work is
supported in part by Grants-in-Aid for Scientific Research
(No. 0564022 and No. 0460150) to K.S., and by a Grant
for the Joint Research on the in vitro sliding movement
to K.T. and K.S., from the Ministry of Education, Science
and Culture of Japan.

trp'(I) = 0 in place of either the condition lit"(I) = 0
(i.e., t~ = 0) or p'(I) = 0 (i.e., tr = ~) used in the above
analysis. Physically, this condition corresponds to a head
with an "elastic hinge" and may be more close to the reality
of Fig. 1(b). Using a numerical diagonalization technique,
we found that, for ~ .- 0 and for e o(- p, —p, '," -. 0,
the two relevant eigenvalues corresponding to the slowest
modes are asymptotically given as the roots of the equation
A + (C~ E CzK)A + CzK = 0, where C~, Cz, and C3
are positive real constants. Only when ~ = 0 does the
Goldstone mode (A = 0) exist. For ~ ~ 0 the Hopf-type
instability occurs at e = C~ C2K [5].

Next, we try to assess the magnitude of the phenomeno-
logical friction constants g~~ and g~ using the results of
our analysis. These friction constants are of biophysi-
cal interest since they refIect the parameters concerning
the interaction processes between protein motors and fila-
ments [7]. In our theory the rotation of the filament oc-
curs for p, = fpl /8 ~ 30.6. Adopting the estimate 8 =
(2 —3) X 10 ' dyncm [ll] for an actin filament and
also using the value 8 = 4 p, m taken from the experimen-
tal observation shown in Figs. 1(a) and 1(b), we deduce fp

to be bounded from below as fp ~ fp;„——(1—1.5) X
10 s dyn/cm. On the other hand, from our phenomeno-
logical model the sliding velocity v~~ of a straight fila-
ment without pinning is v[[ = fp/f[[ ~ fp;„/gj~. From
the experimentally observed value of v = 5 p, m/sec, we
therefore have g~~

~ fp;„/v~~ = (2—3) && 10 dynsecl
cm . With regard to the flapping oscillation, the angu-
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