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Glueballs and Instantons
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Gluonic correlation functions and Bethe-Salpeter amplitudes are calculated in an instanton-based
model of the QCD vacuum. We consider both the pure gauge case and the situation for real QCD with
two light quark flavors. We show that instantons lead to a strong attractive force in the J = 0++
channel, which results in the scalar glueball being much smaller than other glueballs. In the 0
channel the corresponding force is repulsive, and in the 2++ case it is absent. The resulting correlators,
masses, coupling constants, and wave functions are compared to the results of lattice simulations.

PACS numbers: 12.39.Mk, 12.38.Gc, 12.38.Lg

One of the most obvious questions in QCD is why
the observed hadrons are made of quarks and not of
gluons. It appears that glueballs are much heavier than
typical quark-model hadrons, and therefore they have
large widths and/or complicated decay patterns, making
them difficult to find. But why are glueballs so heavy?
What are their masses, radii, and other parameters in a
purely gluonic world, and how do they change if one
includes light quarks?

To get a reference point, consider a conventional model
of glueball states such as the bag model. The low-
est fermion and (electric) gluon modes in a spherical
cavity have energies 2.04/R and 2.7/R. Thus, glue-
balls are expected to be heavier than quark states, but
not much. Ignoring spin-dependent forces, one expects
mo" = m2" = 1GeV and mo- ~ ——1.3 GeV. Including
these forces (and other refinements) [1] the model pre-
dicts that the low-lying glueballs have masses m = 1.0—
1.8 GeV and very similar radii r = 0.7—0.9 fm.

A number of "glueball candidates" have been experi-
mentally observed, but none was unambiguously identified
(see, however, [2]). Lattice simulations provide impor-
tant qualitative insights, and (although large-scale numeri-
cal efforts are still necessary) a few statements appear to be
firmly established [3]:(i) The lightest glueball is the scalar,
with a mass in the 1.6—1.8 GeV range. (ii) The tensor
glueball is significantly heavier mz+ /mo. + = 1.4, with
the pseudoscalar one heavier still mo- /mo++ = 1.5 —1.8
[4]. (iii) The scalar has a much smaller size than other
glueballs. This is seen both from the magnitude of fi-
nite size effects [5] and directly from measurements of the
wave functions [6,7]. The size of the scalar glueball (de-
fined through the exponential decay of the wave function)
is ro++ = 0.2 fm, while r2. + ——0.8 fm [7]. For compari-
son, a similar measurement for the ~ and p mesons gives
0.32 and 0.45 fm [7], indicating that spin-dependent forces
between gluons are stronger than between quarks.

Important tools that provide information about gluonic
interactions are the correlation functions of gluonic op-
erators with the relevant quantum numbers, such as the
field strength squared (0++), the topological charge den-

sity (0 +), and the energy density (2++):

. zOT = 4(gG„', ) —g Go Go
In the following, we consider correlation functions
IIi-(x) = (O~Oi-(x)Oi-(0)~0) for Euclidean separation x.
An important low energy theorem was proven in [8]:
The integral of the scalar correlator is determined by the
gluon condensate, f d x IIs(x) = (128~ /b)((gG) ),
where b denotes the first coefficient of the beta func-
tion and the integral is regularized by subtracting the
perturbative contribUtion. This theorem indicates the
presence of rather large nonperturbative corrections in the
scalar channel. On the other hand, the operator product
expansion (OPE) predicts that the leading-order power
correction O((G „)/x ) vanishes [8], while radiative
corrections of the form n, In(xz)(G, )/x or higher order
power corrections like (gf'"'G', G," G' )/x are very
small.

In practice, there are two approaches to QCD sum rules
for scalar glueballs. In the original work [8], the low
energy theorem was enforced by introducing a subtraction
constant. In this case, the subtraction constant completely
dominates over ordinary power corrections, and one finds
a large scalar glueball coupling. However, the vacuum
picture advocated in this paper was a rather homogeneous
one (with large size instantons melted with other vacuum
fluctuations), so that the source of the large subtraction
constant was not clear. In more recent works on the
subject [9,10], the low energy theorem was not enforced
and instead a number of higher order corrections in
the OPE were evaluated. Although the resulting mass
estimate is similar to what was obtained earlier, the
resulting glueball correlation functions are very different.
In particular, the low energy theorem is underestimated
by about an order of magnitude and the scalar glueball
coupling constant is substantially smaller.

In this paper we study gluonic correlation functions
in an instanton-based model of the QCD vacuum [11).
The main assumption underlying the model is that the
gauge fields in the QCD vacuum are dominated by the
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strong fields of small size instantons. Support for this
assumption is provided by the calculation of hadronic
correlators in the model [12] and the analysis of "cooled"
lattice configurations [13],where nonclassical fluctuations
are removed from the vacuum. Our main point is that
small size instantons can lead to a strong enhancement
in the scalar correlation function and give a consistent
description of the low energy theorem. We believe that
the smallness of the scalar glueball provides a strong
argument in favor of the picture presented here.

Before we discuss quantitative predictions, let us con-
sider qualitative features of point-to-point correlators
[14,15]. Quark correlation functions roughly fall into
three classes, depending on how asymptotic freedom is
broken at intermediate distances. The nonperturbative
corrections may either be (i) large and attractive (the cor-
rections have the same sign as the free correlation func-
tion), as for the pseudoscalar 7r, K, o. mesons; (ii) large

384g
Hs p(x) = ( ) „+np II;„„(x), (2)

11r(x) = 24g4

7T x (3)

where g is the running coupling constant and II,„„(x)is
the instanton contribution

and repulsive, as for the heavy scalars g' and 6; or (iii)
they can be small even at rather large distances x = 1 fm,
as is the case for the vector mesons p, a~, co, @. This
classification is easily understood [15] since the instanton-
induced interaction between quarks found by 't Hooft [16]
has precisely the required spin-isospin properties.

Instanton effects in the gluonic correlation functions
can be studied by calculating the correlator in the classical
field of a single instanton. Adding the short-distance
contribution from the free gluon propagator, one finds

Il;», (x) = y + 28y —94y —160y
122887r p s s 4

y6 y2 + 4 s
24o ~ 4 (y120 + (y + 2y + 3y + 2)arcsinh~—

yv'y'+ 4

(4)

with y = x/p. The approximation used is that we ignore
any interference between quantum and classical fields.
The reason is that these contributions correspond to power
corrections O((G, )/x ), which, as mentioned above, are
very small in the channels considered here.

To first order in the instanton density, we find the
three scenarios discussed above: attraction in the scalar
channel, repulsion in the pseudoscalar, and no effect in
the tensor channel. The last case is a consequence of
the fact that the stress tensor in the self-dual field of an
instanton is zero. If one compares the result (4) with
a similar calculation for the pion, one finds that the
instanton contribution in the glueball channel is enhanced
by a factor 5O = [8~ /g(p) ] with respect to the result
for the pion. This means that despite the fact that the
scalar glueball is so much heavier than the pion, the
correlation function at distances x = p is even larger.

In order to make these statements more quantitative and
study their dependence on the presence of light quarks,
we have calculated the correlators on the presence of light
quarks, we have calculated the correlators for three dif-
ferent instanton ensembles. The simplest is the random
instanton liquid model (RILM), which assumes that in-
stantons and anti-instantons are distributed randomly in
position and color space. Already this simple model is
very successful in the description of a large number of
hadronic correlation functions [12]. In this model the
QCD vacuum is dominated by small-size (p = 0.3 fm)
instanton or anti-instanton fluctuations with a total den-
sity n = 1 fm . Including the correlation between in-
stantons, introduced by the gluonic interaction between
them, gives a more complicated ensemble that we call
the quenched instanton liquid model (QILM). Also tak-

ing into account the fermionic determinant one arrives at
the unquenched interacting instanton liquid model (IILM).
As shown in [17], this ensemble reproduces an important
feature of QCD: the screening of the topological charge
and a correct description of the g' channel.

In our simulations we calculate the correlators as in
(2), but the classical part is now evaluated for multi-
instanton configurations. The scalar correlator has an
x-independent contribution from the gluon condensate,
which must be subtracted. The running coupling constant
g is calculated from the perturbative beta function at short
distances, but frozen at a value of n, /~ = 0.3.

The resulting correlation functions are shown in Fig. 1.
The correlators are normalized to the free ones, so that
all curves approach 1 at short distances. Deviations
from 1 at intermediate distances are very different in
different channels. Up to x = 0.25 fm, these deviations
are consistent with the single-instanton correction (4),
but at larger x multi-instanton contributions become
important. Note that for the pseudoscalar correlator in
the interacting ensemble the correction even changes sign.
This is a result of correlations between instantons and
anti-instantons that lead to the screening of the topological
charge. In the ensemble with light quarks a new state,
the g' appears. Apart from this, one observes that the
results for the three ensembles considered are rather
close, suggesting that single-instanton effects (rather than
correlations among them) are dominant.

One consistency check is provided by the low energy
theorem. We find that the integral of the scalar correlation
function (integrated up to x = 0.7 fm) is 97 ~ 6 GeV
for the random and 66 ~ 7 GeV" for the interacting
ensembles, to be compared with the low energy theorem



VOLUME 75, NUMBER 9 PHYSICAL REVIEW LETTERS 28 AvovsT 1995

5

I i I i I s I ~ I

I
'

I
'

I
'

I
'

I Z"

np(&)

5—

I
'

I
'

I
'

I
'

I

I i I i I i I

.2 .3 .4 .5

FIG. 1. Scalar, pseudoscalar, and tensor glueball correlation
functions normalized to the corresponding free correlators. The
results in the random, quenched, and full ensembles are denoted
by stars, open triangles, and solid squares, respectively. The
solid lines show the parametrization described in the text, the
dashed line the dilute instanton gas approximation, and the
dotted line the QCD sum rule calculation [10]. The horizontal
line in the second figure was added to guide the eye, the vertical
scale in the third figure is 10 ".

value 62 GeV . In Fig. 1 we also compare our results
with predictions from QCD sum rules. The dotted
lines correspond to the glueball parameters obtained
in [10] (the results from [9] are very similar). We
clearly observe that QCD sum rules do not predict
a substantial enhancement of the scalar correlator, the
value of the sum rule is only 13 GeV . Unfortunately,
most lattice simulations use very nonlocal operators (in
order to increase the ground state signal), and their
correlators cannot be compared directly to our results.
We strongly encourage direct measurements of point-to-
point correlation functions and the corresponding coupling
constants, similar to the results for quark correlators
reported in [14].

We have fitted the glueball masses and coupling con-
stants using a parametrization of the spectral function that

consists of a zero-width pole and a continuum starting at a
threshold so. For I = S, P the correlator reads

4
IIi.(x) = Ai-D(mr, x) + dss D(~s, x), (5)

0

where D(m, x) = (m/47r x)Kt (mx) is the Euclidean
scalar propagator and Ai- = (OIOi-IO ) is the coupling
of the resonance to the gluonic current. Statistical
fluctuations at large distances limit the accuracy of
our mass determination, but the coupling constants are
determined rather well. Fitting the parametrization (5)
to the measured correlator for scalar gluonium in the
random model we find a mass mo. + = 1.4 ~ 0.2 GeV
with the coupling strength Ao+ = 17.2 ~ 0.5 GeV .
In the quenched and the full ensemble the correlation
function is somewhat smaller at intermediate distances, a
consequence of the low energy theorem discussed above.
At distances x & 0.5 fm there are large uncertainties
due to the subtraction. The mass and coupling constant
are mo++ = 1.25 GeV and Ao" = 15.6 GeV in the full
theory and mo" = 1.75 GeV and Ao" = 16.5 GeV in
the quenched case. These values are about twice as big
as the value obtained in the only lattice measurement of
this quantity, Ao++ = 7.8 GeV [18].

In the pseudoscalar case the classical and one-loop con-
tributions have opposite signs. At distances where they
tend to cancel each other our approximation (which ne-
glects the interference between the two) becomes question-
able. However, the rapid downturn directly translates into
the position of the perturbative threshold, for which we find

~so ——3.0 GeV in the random model and ~so ——2.4 GeV
in the quenched theory. We see no clear evidence for a
pseudoscalar glueball state below the continuum threshold.
In the unquenched theory we observe the g' signal with
m„~ 800 MeV and A„= 7.0 GeV . Using the anom-
aly equation, this corresponds to f„~ = 200 MeV.

The tensor channel has no large nonperturbative correc-
tions, because isolated instantons and anti-instantons have
a vanishing energy-momentum tensor. Thus the classical
contribution is entirely due to the interaction between in-
stantons. One may therefore question the importance of
instantons in this channel. On the other hand, the OPE
also does not predict any power corrections at O(G ) and
O(G ), and in a self-dual background field all power cor-
rections vanish [8]: the smallness of the nonperturbative
corrections may therefore survive. We find a small clas-
sical contribution to the tensor correlator (see Fig. 1), but
have not made an attempt to determine the corresponding
mass value. The data can be used to put an upper limit
AT ~ 0.6 GeV on the tensor coupling.

Since the scalar correlator is so much bigger than the
other ones, one may speculate that the scalar glueball
should also be much more compact. We have checked
this statement by calculating the Bethe-Salpeter ampli-
tudes (or "wave functions"), defined as

Pi-(Y) = lim (OIOi-(x)Oi-(0)IO), (6)
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FIG. 2. Scalar and tensor glueball Bethe-Salpeter wave func-
tions in the random instanton ensemble. All wave functions are
normalized to 1 at the origin. The solid and dashed lines show
a parametrization of the data used to extract the mean square
radii while the dashed curve shows the scalar wave function in
the dilute instanton gas.

where Os(0) = g G', (—y/2)G'„(y/2), etc. are point-
split operators and y is orthogonal to x. By definition,
P(0) = l. At small separation x the wave function of
the scalar glueball essentially measures the size of the
instanton, ps(y) = I —(2y/3p)z + O(y4).

Our results for the random ensemble are shown in
Fig. 2 (those for other ensembles are very similar). The
scalar wave function is indeed found to be very compact.
It is not exponential at short distances (presumably due to
the lack of short range perturbative interactions), but the
overall shape can be described by an exponential decay
P(y) = exp( —y/R), with a fitted radius R = 0.21 fm.
This value is in good agreement with the lattice result
R = 0.2 fm [7]. The tensor wave function is much larger
in size, R = 0.61 fm, to be compared with the lattice
result R = 0.8 fm. Together with our earlier work [12],
in which we determined the sizes of the pion r = 0.56 frn
and rho meson r = 0.70 fm, this shows that the instanton
model leads to significantly larger spin splittings for
the glueball radii. For the pseudoscalar glueball the
interaction is repulsive and we do not find a localized
wave function in our model. We therefore conjecture
that lattice measurements should find a dip in the wave
function at small distances. Let us conclude by noting that
the observed hierarchy of sizes, from a very small scalar
to a large tensor and a presumably large pseudoscalar, is
of great significance for phenomenological searches, since
it may affect the branching ratios into different final states
(see [2] and the discussion in [7]).

In summary, we have shown that instanton-induced
forces between gluons lead to strong attraction between
gluons in the 0++ channel, strong repulsion in the 0
channel, and no short-distance effects in the 2++ channel.

We have calculated point-to-point correlation functions
using the "instanton liquid" model (with and without
quarks). The fitted masses are compatible with lattice
results. More importantly, our large scalar coupling
constants are in agreement with the low energy theorem,
and the scalar gluonium size is as small as 0.2 fm, as was
observed in [7]. We have argued that measurements of
gluonic correlators and wave functions provide important
insights into the structure of the QCD vacuum, and lattice
measurements of the correlators predicted in this paper
would be very desirable.
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