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CP Asymmetry Relations between Bo .- mn. and Bo -. mE Rates

N. G. Deshpande and Xiao-Gang He
Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403-5203

(Received 30 December 1994)

We prove that the CP violating rate difference A(rr vr ) = 1 (B" vr+m ) —I (B 7r mr+)

is related to 5(vr K ) = 1 (vr+K ) —I (Bo m. K+) in the three generation standard model.
Neglecting small annihilation diagrams, and in the SU(3) symmetry limit, we show that A(~ 7r ) =

A(v—r K ) The. SU(3) breaking effects are estimated using the factorization approximation, and
yield h(sr+sr ) = (f /—f~)~Is. (7r+K ) The .usefulness of this relation for determining phases in the
CKM unitarity triangle is discussed.

PACS numbers: 11.30.Er, 12.1S.Hh, 13.2S.Hw

Detection of CP violation and verification of the unitar-
ity triangle of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix is a major goal of 8 factories. In this Letter we
shall prove a remarkable relationship between the rate dif-
ference A(sr+sr (~ 7r )) = I (B" 7r+~ (7r"~ ))—
I (Bo 7r ~+(7rovro)) and A(~+K (m. ohio)) = I (Bo

7r+ K (noKo)) —I (Bo 7r K+ (~oKo)) This re-.

lationship is shown to follow from purely SU(3) symme-
try and neglecting annihilation diagrams that are estimated
to make a negligible contribution. In particular, we do
not rely on the spectator model, which could be unreli-
able for two body decays. These relations will provide
a useful test of the standard model (SM) and also be of
immense value in making precise measurements of the
phase angles in the unitarity triangle. Another crucial ob-
servation is that many researchers have suggested looking
for rate asymmetry in the 8 ~ ~K system where there is
interference between the tree and penguin contributions.
On the other hand, it was thought that in the 8 ~ ~~
process penguins do not play an important role. Our work
shows the close connection between the two systems.
The presence of asymmetry in 8 ~ mE, which can be
measured at CLEO, will imply penguins in the 8 ~ ~~
process.

The angle ct = arg(V, b V,d/V„b V„d) can be determined
by measuring the time dependent CP asymmetry a(t)+ (oo)
in B (B ) ~ sr+sr (n vr ) decays [1,2]. The coefficient
of the term varying with time as sin(Amt) is proportional
to ImA+ ~00), which is defined as

IA(~ ~ (~'~'))j .
-

o o))j
(2 + 0

jA ~-7r+(~o~o

where A(vr7r) and A(7r7r) are the Bo ~ vrvr and B" ~
~~ decay amplitudes, respectively. We will use simi-
lar notations for B(B)~ vrK amplitudes. If penguin
contributions are ignored, one finds A(~+~ (7r ~ ))/
A(~ ~+(~ ~ )) = V,bV„d/V„bV„d, 0+ (oo)

= 0, and
ImA+ too)

= sin(2ct). However, the penguin contribu-

H, gt
= V b V„(ctOt + c20p)uq

10
—p(V, b V,

*
c,' + V,b V,

'
c,'

I=3

+ V,bV, c,')0; + H.c., (2)

where the superscript f indicates the loop contribution
from f quarks, and 0; are defined as

tions may be large [3] and should not be ignored. 0+ —(ooi

may substantially deviate from zero and cause uncertain-
ties in the determination of o. . A method has been sug-
gested to remove the uncertainties due to penguin effects
by measuring the magnitudes of individual decay for 8
vr+vr (vrovro), B+ ~ ~+mo, and the corresponding anti-
8 decays, and using these amplitudes to construct isospin
triangle relations for the three 8 decay modes and the
three anti-8 decay modes. Information from the differ-
ences of these two triangles will allow one to determine
0+ loo) [2]. For decay modes of the charged B, the ampli-
tudes are easy to measure. For decay modes of the neutral
B, the measurements will be more difficult. For exam-
ple, it is easy to measure the average decay amplitude for
I (B"(B")~ ~+7r ). However, to separately determine
the amplitudes for I'(B ~ 7r+~ ) and I (B ~ 7r+~ ),
one needs tagging and therefore a loss of event numbers. If
A(a+7r ) were known, then it would be quite easy to de-
duce the individual rates. The rate difference A(rr+K ),
on the other hand, is much easier to measure because it
is a self-tagging mode. Similarly, we can get information
for /s. (~ovro) from the measurement of A(7roKo). In this
case the rate difference A(rr K ) is also a difficult quan-
tity to measure because it also needs tagging. However, it
might be easier to measure compared with A(7r vr ) since
8 ~ ~ ~ is expected to be highly suppressed. We now
proceed to prove the relation.

In the SM the most general effective Hamiltonian for
8 ~ ~7T and 8 ~ ~K decays can be written as
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0] = q~ pp Lup up p Lb~,

03s = qypLbq'y~L(R)q',

07q = zqypLbeq q'y R(L)c

02 = qy~Luuy~Lb,

046 = q~y~Lbpqpy~L(R)q',
q 3 —/ /Os)p = 2q~y~Lbpeq qpy~R(L)q (3)

where R(L) = 1 + (—)ys, and q' is summed over u, d,
and s. For AS = 0 processes, q = d, and for b.S = 1

processes, q = s. Oz and 0) are the tree level and QCD
corrected operators. 03 6 are the strong gluon induced
penguin operators, and operators 07—$0 are due to y and
Z exchange, and "box" diagrams at the loop level. The
Wilson coefficients c; are defined at the scale of p, = mb

f
and have been evaluated to the next-to-leading order in
QCD [4]. Our results are, however, independent of the
detailed numerical values of the Wilson coefficients.

Using the unitarity property of the CKM matrix, we
can eliminate the term proportional to V,bV&q in the
effective Hamiltonian. The B decay amplitude due to
the complex effective Hamiltonian displayed above can
be parametrized, without loss of generality, as

(final state~Hgff~B) = V,bV,
*

Tq + V bV,*Pq, (4)
where Tq contains the tree contributions and penguin
contributions due to u and c internal quarks, while Pq
only contains penguin contributions from internal c and t
quarks.

Since the effective Hamiltonian H, qf responsible for
AS = 0 8 decays is related to H,'rf for AS = 1 8 decays
by just changing d quark to s quark, one expects certain

relations between Td, Pd and T„P, in the SU(3) limit.
Let us consider the two pseudoscalar meson decays of B
mesons in a general framework.

SU(3) relations for 8 decays have been studied by
several authors [5—7]. We will follow the notation
used in Ref. [6]. The operators Q& z, Os 6, and 07—lp

transform under SU(3) symmetry as 3, + 3b + 6 + 15,
3, and 3, + 3b + 6 + 15, respectively. In general, we
can write the SU(3) invariant amplitude for 8 to two octet
pseudoscalar mesons for Tq in the form

T = A(s)8;H(3)'(M(Mg) + C(s)8;MgM H(3)i

+ A(6)B;H(6)p M~M( + C(6)B;M~H(6)( Mp

+ A()s)B;H(15)1, M~MI + C( ,s)B;MJH—(15)(Mk,
(5)

where 8; = (8,8",8, ) is an SU(3) triplet, M;, is the
SU(3) pseudoscalar octet, and the matrices H represent
the transformation properties of the operators 0 ~ 10.
H(6) is a traceless tensor that is antisymmetric on its
upper indices, and H(15) is also a traceless tensor but is
symmetric on its upper indices. For q = d, the nonzero
entries of the H matrices are given by

H(3)' = 1, H(6)" = H(6)" = 1,

H(15)2 = —2,H(15)', = H(15), ' = 3,

For q = s, the nonzero entries are

H(6), ' = H(6) = —1,
H(15)3 = H(15)3 = —1. (6)

H(3)' = 1, H(6)', = H(6) = 1,

H(15),"= —2,

H(6)", = H(6)", = —I,
H(15) = H(15) = —1.H(15)I = H(15)1' =

We obtain the amplitudes Td(qr7r), T, (qrK) for 8 ~ qrqr, 8 ~ ~K as
+ T T T T T T

Td(qr 7r ) = 2A(s) + C(3)
—

A(6) + C(6) + A()s) + 3C((s),

(7)

Td(qr qr ) = (2A(3) + C(3)
—

A(6) + C(&) + A(—,z)
—

5C(&z)),Q2

(3 T8
Td(qr qr ) = C( ),+2

T, (~+K ) =

T,(~'K') =

T T T T T
C(3)

—
A(6) + C(6)

—
A(&g) + 3C(]5),

1 T T T T T
(C(3)

—
A(6) + C(6)

—
A()s) 5C(—, )) .

Q2

We also have similar relations for the amplitude Pq. The corresponding amplitudes will be denoted by A; and C; . We
clearly see that the triangle relation (which follows from isospin) holds: A(qrpqr ) + A(qr 7rp) = A(sr+a )/~2. A
similar relation for the charge conjugate decay modes also holds.

The amplitudes A(3) (6) (&&) all correspond to annihilation contributions. This can be verified because the light quark
index in the B meson is contracted with the Hamiltonian. It has been argued that the annihilation contributions are small
[7]. In the factorization approximation, these amplitudes correspond to a matrix element of the form, for example, for
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8 ~ 77 7T decay,

Iq I 2qlO&,

(10)

where q can be u or d quarks. If I' = y~(1 —ys) and
I z = y&(1 ~ ys), this matrix element is equal to zero
due to vector current conservation. The only exception is
when the operators are Fierz transformed, one also obtains
a contribution of the type I' = 1 —

y5 and I z = 1 + y5.
However, this contribution is suppressed compared with
other contributions. In the factorization approximation, for
q = d, this contribution is given by

m~ 1
M = ifllmll F (m~),

m, + md m$ + md

where we have used (OId(1 —ys) b IB ) = i foal mal/(mb +
md) and (~+7r IddIO) = F (q )m /(m„+ md) [8].
Assuming the single pole model for the form factor,
F (q ) = 1/(1 —

q /m ) with m = 700 MeV,
F (mll) = —0.02. For B ~ vr+7r we find that the
annihilation contribution to Pd(7r lr ) is only about 4%,
and the contribution to Td(sr+sr ) is much smaller. To a

A(7r+7r (lr lr )) = V,bV, dT+ (po) + VlbV, dP+

A(7r+K (7r K )) = (—)V,bV„*,T+ (()())

+ ( )V,b V,",—P+ (oo)— (12)

Analogous relations have been discussed in the context
of obtaining information about penguin contributions to B
decays and to determine the unitarity triangle of the CKM
matrix [7,9]. Some of these studies suffer from uncertain-
ties in the strong rescattering phases in the amplitudes. We
shall use Eq. (12) to derive relations between the decay rate
differences that do not have uncertainties associated with
lack of knowledge of the strong rescattering phases. We
have

good approximation all annihilation amplitudes A(3) (6) (]5)
can be neglected. From now on we will work in this
approximation. We obtain

T(P) —= T(P)d(sr+sr ) = T(P), (rr+K ),
T(P)(pp) —= T(P)d(~ ~ ) = T(P—),(vr K ), (11)

and

~(7r lr (lr lr )) ™(VbV dVlbVld) Im(T (pp)P (pp)) 4~

6(7r+K (vr K )) = —Im(V, bV„*,V,bV„) Im(T+ (pp)P+ (()())) (13)4~
where A, b

= Ql —2(m, + mb)/m~ + (m, —mb) /mz. In the SU(3) symmetry limit, A = A x-. Because of the
unitarity property of the CKM matrix, for three generations of quarks, Im(V, b V,', V,b V„) = —Im(V„b V,*d V,b V,d) [10].
We then find

a(~+ ~ (~'~')) = a-(~'K (—~'K')) .
-

(14)
These nontrivial equality relations do not depend on the numerical values of the final state rescattering phases. Of
course, these relations are true only for the three generation model. Therefore they also provide tests for the three
generation model.

The relations obtained above will be modified by SU(3) breaking effects [7,11]. Since no reliable calculational tool
exists for two body modes, we shall estimate these effects in the factorization approximation to get an idea of their
importance. We have

Td(~ sr+) = i f F() (m )(m~ —m )
2

2m

T,(7r+K ) = i fxFo (m~) (mal
2

X $cl + c2 + gc3"

—m )

cu 2m'
(mb —m, ) (m, + m, )

Td(vr 7r ) =i f F() (m )(m~ —m )
2

cu cu 2m~—~(gc9" + c', p) +
(mb —md)2md

[pcs" + c6" —~(sc7" + cs")]

T, (7r K ) = i f Fo (m ) (mal
—mac) [c& + sc2 —&(C7" + s c&" —c9' —gc&p)] —if&Fp (mx. ) (mls —m )

2

2 2

[gc5" + C6" —z(QC7" + Cs')]
mb llld md + mz

(15)
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where c,"= c,' —c,', c," = c,' —c,', and s = 1/N, with N, being the number of color. The amplitudes Pd, are
obtained by setting c& 2 = 0 and changing c,"to c,". We have used the following decompositions for the form factors:

(~+(q)id7~(I —7s)ui0) = if q„, (K+(q)Id'' (I —7s)ul0) = tfKq„,

(~-(i)iud, biB'(p)) = (k + p)„F', + (m' —m,') "P', (q') —F,"(q')],

(K (k)iud„biB (p)) = (lr + p)~Fi + (m —m~) [F, (q ) —Ft) (q )].
q

Using the fact that mz /(m„+ md) = mz/(m„+ m, ),
we obtain in place of Eq. (14)

I. fscFo (mz)P ~ ~
The above expression neglects possible SU(3) breaking
corrections to the strong rescattering phases, which can-
not be calculated using the simple minded factorization
approximation. We expect these corrections to be small.
Assuming a single pole for the form factor Fti (q ),
the form factor has the form Fri (q ) = 1/(1 —

q /mt'+)
with mo+ = 5.78 GeV. To a good approximation, we
have (A /A ~) [Fo (m )/Fo (mx)] = 1. We finally
obtain

(18)a(~'~ ) = —,a(~'K ).
f~

The result can be understood by noting that in the
spectator approximation the main SU(3) breaking effect
arises from the difference in the R'+ ~ ~ compared
to the R'+ ~ K+ transition. Although we expect this to
be a reasonable estimate of the SU(3) breaking effects, if
nonspectator diagrams play a more important role than the
factorization approximation suggests, the result could be
seriously contaminated.

For B m ~0 and B m K, the correction
is more complicated for two reasons: (i) in general

f Fo (m ) is notequal to ftrFri (m~), and(ii) the u and
d quark masses are not equal. These cause the amplitudes
T(P)d(7r zr") and T(P), (n"K ) for B"~ vr vr" and
B ~ ~ K to be different not simply by an overall
factor as in the case for B ~ ~+~ and B ~ ~+K
However, we estimate that the SU(3) breaking effect is
about 30%.
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