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Electroweak Baryogenesis from a Classical Force
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We describe a new effect that produces baryons at a first order electroweak phase transition. It
operates when there is a CP-violating field present on propagating bubble walls. The novel aspect is
that it involves a purely classical force, which alters the motion of particles across the wall and through
diffusion creates a chiral asymmetry in front of the wall. We develop a technique for computing the

baryon asymmetry using the Boltzmann equation, and a fluid approximation which allows us to model

strong scattering effects. The final formula for the baryon asymmetry has a remarkably simple form.

PACS numbers: 98.80.Cq, 11.15.Ex, 11.27.+d, 11.30.Er

The last ten years have seen a growing realization that
the standard electroweak theory satisfies Sakharov's condi-
tions for baryogenesis: 8 violation, departure from thermal
equilibrium, and C and CP violation [1]. Nonperturbative
B violating processes involving the electroweak SU(2)z
chiral anomaly appear unsuppressed at high temperatures
[2]. The electroweak transition is weakly first order for
light Higgs masses, MH ( 80 GeV [3]. It proceeds via
bubble nucleation, with departures from thermal equilib-
rium on and around bubble walls [4]. Finally, C and CP
are violated, the latter via the phase in the Kobayashi-
Maskawa matrix. The CP violation in the minimal theory
is very small, but there may be amplification mechanisms
that enhance it, or additional Higgs fields with CP viola-
tion in the Higgs potential (for reviews see [5,6]).

In this Letter we study baryogenesis due to a CP-
violating condensate on bubble walls. Several mecha-
nisms have already been pointed out through which such
a condensate can produce a baryon asymmetry. It couples
via a term in the effective action to bias the winding of the
gauge and Higgs fields [7]. It also acts to bias hypercharge
violating particle interactions, which in a certain con-
strained thermal equilibrium favors baryon production—
"spontaneous" baryogenesis [8—11].

In addition to these local effects, particle transport can
carry the CP violation present on the wall into the un-

broken phase, where the B violation rate is maximal [12].
Until recently, this nonlocal barogenesis was thought to
necessarily involve quantum mechanical interference-
the idea was that the condensate causes CP violation in
particle-wall scattering amplitudes, leading to a chiral Aux

(i.e., more tz's than tz's) being injected into the unbro-
ken phase where it drives baryon production. Top quarks
are the obvious candidate because of their large mass and
thus strong coupling to the wall. However, significant
asymmetries can only be produced for very thin walls
because the quantum interference effect tends to be de-
stroyed by the strong (QCD) scattering of the quarks, and
is also WKB suppressed for walls much thicker than the
inverse top mass. Partly for these reasons we considered
tau leptons as an alternative because they are much more
weakly coupled to the plasma [13,14].

In this Letter we discuss a new, purely classical mecha-
nism through which nonlocal baryogenesis can be driven.
It does not rely on quantum mechanical interference, and
thus may be calculated from a Boltzmann equation, which
we shall solve analytically in a fIuid approximation. The
physical picture is extremely simple: the classical force
drags an excess of chiral charge onto the wall, leaving a
compensating deficit of chiral charge in front of the wall,
which drives baryogenesis. Particle transport is the key
to this mechanism —if particles are free to diffuse in the
medium, they are free to respond to the chiral force on
the wall. Conversely, if particles cannot move relative
to the plasma (e.g. , top quarks in the limit of large ns)
the whole effect goes away, and only local baryogenesis is
possible.

The qualitative criterion for efficient transport is that a
particle should be able to diffuse a distance x ) L, the
wall width, in the time the wall takes to pass t = L/v
with v the wall velocity. Setting x —Dt, with D the
diffusion constant, we find the following.

Condition 1: v ( D/L (for efficient transport).
Secondly we require that the phase space density

approach a local thermal equilibrium (LTE) form, in

which a chiral charge builds up on the wall. This requires
that the equilibration time r be smaller than the time of
passage of the wall L/v . We will discuss below how
we determine this time scale ~ within our calculation and
find that ~ —D. We therefore require

Condition 2: v ( L/D (for LTE to establish).
And finally we demand that the semiclassical (WKB)

approximation must be accurate. For this to be true, the
effect should come from particles with typical momenta

p, such that
Condition 3..

~ p, ~
&& L (for classicality).

Conditions 1 —3 are plausibly met in the standard
electroweak model, and minimal extensions. As long as
they are, we shall see that the final baryon asymmetry is,
to a good approximation, independent of v, I., and D.

One loop calculations yield L —(20 —40)T ' [4],
and in our mechanism the particles that dominate the ef-
fect have

~ p, ~

—T, so condition 3 is easily satisfied. We
have estimated [11]D —6T ' for quarks. Calculations
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of the wall velocity are difficult [4], but indicate veloci-
ties in the range v —0.05 —1. Conditions 1 and 2 are
therefore satisfied for a large part of the parameter space
indicated by studies of the phase transition. However, we
expect particle diffusion in front of the wall to become
negligible if v ~ v„ the speed of sound in the plasma,
in which case local baryogenesis should dominate.

Recently, we pointed out in [10] that transport effects
could be important in spontaneous baryogenesis [8], and
raised doubts about this mechanism because transport ef-
fects spoil the constraints imposed in local equilibrium
calculations [10],unless the walls are very thick. Subse-
quently, one of us pointed out that transport phenomena
could actually enhance this mechanism [15], and this has
been independently explored using a diffusion equation
in [16]. We believe that our procedure provides a more
complete framework within which both this and the clas-
sical force effect we focus on here can be computed and
give a detailed treatment of both effects in [11].

We begin with a derivation of the chiral force. The
Lagrangian describing a fermion moving in the classical
background of a bubble wall with CP-violating condensate
is

X,h
= 4y~i(B '—igAZ y ) It —md%, (1)

where gAZ~ = g„Z ' —
—,'[v,'/(v) + v2)]B„&, gA =

4gg~& + g22 for t quarks [14]. The two contributions are
the CP-odd scalar field 0, which is the relative phase of
the two Higgs fields in a two Higgs theory, A@2 pi = Re',
and the Z~ condensate discussed in [17], which may be
present even in the minimal theory. The notation GI
implies that this is the gauge invariant combination of the
gauge fields and Higgs phases that diagonalizes the Higgs
kinetic terms. We treat the wall as planar, and assume
it has reached a stationary state in which the Higgs and
gauge fields are functions of z —v t. In this case, the
field Z~ is pure gauge.

The axial coupling in (1) leads to a classical chiral
force as follows. In the rest frame of the wall Z~ =
(0, 0, 0, Z, (z)). From the corresponding Dirac equation,
setting P ~ e '"', one finds the following dispersion
relation [11]
E=[p +~gp, +m ~gAZ)]', 5, = 2~,

(2)
for both particles and antiparticles. S, is the component of
the spin in the z direction, measured in the frame in which

p~ vanishes. In the WKB approximation, this dispersion
relation accurately describes particles as they move across
a bubble wall —the local eigenstates in (2) shall form
the basis of our treatment. The particles we are most
interested in for baryogenesis are left-handed particles
(e.g. , tt s), and their antiparticles (tt. *s, which are right
handed), because these couple to the chiral anomaly. For
large

~ p, ~, these are easily identifiable in terms of the
eigenstates in (2). Note that they couple oppositely to the
Z field.

1696

The group velocity of a WKB wave packet is determined
from the dispersion relation by v, = z = BE/Bp„and
energy conservation E = 0 = z(BE/Bz) + p, (BE/Bp, )
then implies that p, = —B,F. These are, of course,
Hamilton's equations for the motion of a particle. From
these it is straightforward to calculate the acceleration

dv, 1 (m2)' (gAZ, m~)'

dt 2 E2

where F. and p~ are constants of motion.
This chiral force provided by the Z, field effectively

produces a potential well that draws an excess chiral
charge onto the wall, and leads to a compensating deficit
in a "diffusion tail" in front of the wall. There is net
baryon production because 8 violation is suppressed on
the bubble wall.

We now seek to describe the particle excitations with
dispersion relations (2) as classical fiuids. We focus on
particles with large

~ p, ~

—T && m for three reasons: they
dominate phase space, the WKB approximation is valid,
and the dispersion relation simplifies so one can identify
approximate chiral eigenstates. The S, = +2, p, ~ 0

1
branch and the 5, = —2, p, ) 0 branch constitute one
approximately left-handed Quid L and the other two
branches an approximately right-handed Quid R.

The Boltzmann equation is

d f —= B,f + zB,f + p, Bt f = C(f), —

where z and p, are calculated as above, and C( f) is the
collision integral. This can, in principle, be solved fully.
However, to make it analytically tractable we truncate it
with a fIuid approximation, which we now discuss. When
a collision rate is large, the collision integral forces the
distribution functions towards the local equilibrium form

e~»~'-. I ~-~~ + (5)

where T = P ', v and p, are functions of z and t, and

y = 1/(1 —v )'t . These parametrize the fiuid velocity
v, number density n, and energy density p. We are going
to treat the approximately left-handed excitations L and
their antiparticles L as two fluids, making an ansatz of the
form (5) for each.

As mentioned, the ansatz (5) does allow us to describe
perturbations in the energy density, number density, and
velocity of each fiuid, and we expect it to give a reasonable
qualitative description of the true phase space density
perturbations. As far as the temperature and velocity
perturbations are concerned, we probably cannot expect
this form to be more than qualitatively correct, because the
dominant interactions that establish thermal equilibrium
are those with the background plasma, which are also
responsible for setting 6v and 6T to zero. This is not true,
however, of the chemical potential perturbation, which is
only attenuated by slower chirality changing processes. So
as long as we can check that BT/T and Bv are small,
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compared to p, /T, we believe that (5) should actually
provide an accurate parametrization of the phase space
density.

The collision integrals are evaluated in the approxima-
tion that the particle interactions are local, by using the
Dirac spinors appropriate to the local value of m and Z„
taken to be constant. This is reasonable for the two body
scattering effects we consider, because the QCD interac-
tions are short ranged, the Debye screening length mz~„,„
being smaller than T ' and very much smaller than L.

The ansatz (5) has three arbitrary functions, which
are fully determined from three independent moments of
the Boltzmann equation: we take f d p, f 2 p E, and

f d p p, . For a single interacting fluid these yield the
continuity, energy, and momentum equations. We are
interested in the chiral density, the difference between L
and L chemical potentials, since this quantity drives the
baryon asymmetry. We work to first order in Z, and v

The fluid equations for particle minus antiparticle per-
turbations [6T =—6T(L) —6T(L), p, = p, (L) —p, (L),
6v = 6 v(L) —6v(L )] are, in the rest frame of the wall,

uz'—v + —6v'
TQ 3

p
a&w

TQ

(p, l
( TQ) " TQ)

sz'
+ b —2cv

TQ TQ

6T= —VT
TQ

(gwZ, m )'

TQ
3

p—I —
i

—I*,
P, T ) P, (7)

where the shifted chemical potential difference is p, =
p, —2vg~Z„(p, ) denotes the signed sum of chemical
potentials for particles participating in the reaction, 5 =
(p, ) = (p, —2v g~Z, ) is the difference between shifted
L and L potentials, prime denotes B„a = vr /27/3, b =
npTp/pp, c = 1n2/14/4, g4

= 7r /90, np = 3$3Tp/4~2,
pp = 21$4Tp/87r, and g is the Riemann g function. The
derivation of these equations is simplest if one shifts the
canonical momentum to kz = pz + g~Zz and the chemi-
cal potential to p, . In this way the correct massless limit
emerges as one expands in powers of Zz The relevant
collision integrals may be calculated at zero background
fields [18]. I is simply related to the diffusion constant
D —it is easily seen that D = (npTp/4app)I ' = 4I
In fact, we find I T = 2I, I, = T/24 [11].3

I ~ and I are derived from hypercharge conserving
chirality flip processes, such as those involving external
Higgs particles. In this case, the Z, contribution to the sum
of chemical potentials vanishes. I ~ and I * are the rates
for hypercharge violating chirality flip processes, which
are m suppressed, and for these the Z, contribution does
not cancel. These latter are the terms driving spontaneous
baryogenesis, in its new "diffusion-enhanced" form. This
enhancement was mentioned in a talk by one of us [15],
and explored independently and in much greater detail by
Cohen, Kaplan, and Nelson [16]. In the formalism repre-
sented by the above equations, the spontaneous baryogene-
sis and "classical force" driving terms are both included—
this is fully discussed in Ref. [11]. Here we focus on the
classical force term, which, since the equations are linear,
can be considered independently of the spontaneous baryo-
genesis source terms.

We proceed to solve Eq. (8) to find the perturbations
produced by the force term. We simplify by setting I ~,
I'", I ~, and I „equal to zero. We show in [11]that the
suppression they produce of the classical force effect is,

2 ln2 ggZz m
on the wall ~ (9)

We can now determine p, in front of the wall as
follows. Integrating (7) and (8) (with all I ~'s zero)
gives f „6T = 0 and f 6v = 0. Then integrating
(6) twice we find f p, = 0, i.e., no net integrated
chemical potential perturbation is generated. This means
that the chemical potential generated on the wall is
compensated by an opposite chemical potential off it. As
mentioned above, off the wall the equations for p, reduce
to the diffusion equation, and it is straightforward to see
that in the absence of particle number violation the only
nontrivial solution for p, is a diffusion tail in front of the
wall. This is where the chiral charge deficit occurs, which
drives baryogenesis.

1
for a large range of parameters, a factor between 2 and 1.
With this simplification we can derive our result in a few
lines. First, from (7) we see that if v D/L ( 1 the tem-
perature fluctuation is smaller than the velocity or chemi-
cal potentials by this factor (using I T = 1/3D). This
explains how we arrived at our condition 2 above. Then
from (6) we find a simple relation 6v —v p, . So we
do indeed find that the temperature and velocity pertur-
bations are small. The reason the velocity perturbation
is small is quite general —from the continuity equation it
follows that the velocity perturbation required to create a
given chiral excess in the wall frame is proportional to the
wall velocity. This should be true independently of the
detailed form of the phase space density, which as men-
tioned before we cannot expect to be exact. Since 6v is
small, we can drop the right-hand side (rhs) of (8) because
on the wall it is of order v L/D compared to the p, term,
which is small by condition 1.

We are left with a relation between the chemical
potential p, and the force term on the wall, from (8)
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Hence the integral of the chemical potential in front of
the wall (z ) 0) equals

2 ln2

3' a11
dg ggZ& I (10)

where I, = tr(ct T)4 is the weak sphaleron rate in the
unbroken phase, N, is the number of colors, tr E [0.1, I]
[2]. We have reexpressed p, in terms of top quark and
antiquark chemical potentials. We arrive at a formula for
the baryon to entropy ratio,

I ggZ&
2

T2
1351n2 Ko.

2' zg3 g.
KA

4 w
dz

mt ggZ~
2

T2 (12)

where s = (2' t45)g„T is the entropy density, with

g, = 100 the effective number of degrees of freedom.
This result is remarkably simple all dependence on

the wall velocity, thickness, and the diffusion constant
drops out, provided conditions 1 and 2 are satisfied.
It is also quite large: (m, /T) —1, so ntt t's —4 X
10 KOpp, where O~p characterizes the strength of the
CP violation. In a longer paper [11] we give a more
detailed derivation of (12) with a full discussion of
parameter dependences, including the effect of the I ~
terms we have neglected here.

The m dependence in (12) means that, at least with
standard model-like Yukawa couplings, the top quark
dominates the effect. The mass-over-temperature sup-
pression can be significant, if the Z, field is localized on
the front of the wall where the Higgs vacuum expectation
value is small.

The calculation of the classical force effect above uses
the opposite (WKB) approximation to those employed in
quantum mechanical reliection calculations (thin walls)
[12,13]. The classical force calculation is in some re-
spects "cleaner, " because the production of chiral charge
and its diffusion are treated together. The classical force
affects particles from all parts of the spectrum, mostly
with typical energies F. —T, and with no preferential
direction, while the quantum mechanical effect comes
mainly from particles with a very definite ingoing momen-
tum perpendicular to the wall: p, = mtt (Higgs mass).
The quantum result falls off strongly with L (at least as
L ) as the WKB approximation becomes good. The
quantum result also has a v ' dependence coming from
the diffusion time in the medium, which the classical re-
sult loses because the force term is proportional to v

Finally, we mention possible extensions of these meth-
ods. In the above treatment we have completely ignored
collective plasma effects (Debye screening, Landau damp-
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Now, using the standard formula for baryon number
violation

3 I,

ing, etc.) and merely treated local particle interactions.
The Boltzmann equation is easily modified to include these
effects, with force terms due to the electric (and magnetic)
fields, which are solved for self-consistency. The Quid
truncation may be a useful way to compute the bubble wall
velocity (at least the friction due to top quarks), and we
shall return to this in future work. We intend also to ex-
tend these methods to study Z condensation in the standard
model [17] in the presence of strong interactions.
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