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We analyze a model that has been shown to undergo a purely noise induced transition, from a
monostable regime to a bistable one, when it is submitted to a white or colored noise source. We show,
using a consistent interpolating Markovian approximation for the colored noise case, that for large
values of the correlation time, the system undergoes a new transition to a monostable state, indicating a
reentrancelike phenomenon in its phase diagram. Numerical results support our findings.

PACS numbers: 05.40.4j

The study of dynamical systems subject to a noise
perturbation has become a recurrent theme in physics,
chemistry, and biology, as well as in several other areas.
Particularly for nonequilibrium systems, where the
macrovariables obey nonlinear equations of motion, noise
plays a crucial role. For instance, the system can over-
come potential barriers and reach different macrostates
due to only the presence of noise [1]. One aspect that
attracted considerable attention was the fact that some
systems, when far from thermodynamic equilibrium, due
to the influence of external noise sources, show the strik-
ing characteristic of undergoing transitions to new states
that sometimes are not present in the deterministic de-
scription. These transition phenomena pose a fascinating
problem as, contrary to all intuition, it is the environmen-
tal randomness that deeply influences the macroscopic
system’s properties, inducing a more structured behavior.
These types of nonequilibrium transition phenomena have
been called noise induced transitions [2,3].

On the other hand, more realistic models of physical
systems require considering noise sources with finite cor-
relation times (i.e., colored noise). For example, in or-
der to describe the static and dynamical properties of dye
lasers, the usual model includes in its stochastic differen-
tial equations (SDE’s) not only the standard internal white
noise, but also an external colored noise [4]. The effect
of time correlations in the fluctuations has also been taken
into account in several models [2,3,5,6]. Some recent pa-
pers and reviews on the colored noise problem [7-10]
offer a view of the state of the art. Many efforts were
oriented to obtaining Markovian approximations, with the
aim of capturing the essential features of the original non-
Markovian problem. Along this line, a recent approach
was based on an interpolation procedure [11].

In this paper, we present an analysis of a chemical
reaction system and/or genic selection model [2,3,5],
when it is subject to a colored noise source, by using
the interpolation procedure. This approach allows us, at
variance with previous studies, to obtain the complete
phase diagram for the whole range of parameters. The
choice of the above indicated genic model is due to
the fact that it is an archetype of the kind of models
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studied within the realm of noise induced transitions
[3]. The result of our study, supported by numerical
evidence, is that the phase diagram shows a novel feature
corresponding to a reentrancelike phenomenon.

The colored noise problem can be represented by a
general SDE of the form

y(1) = fIy()] + (), ey
where €(¢) is a non-delta-correlated noise source. We
can make the following considerations about the noise.
First, as real noise sources reflect the cumulative effect
of weakly coupled individual fluctuations, the central
limit theorem states that the noise must be Gaussian.
Second, although the complete system that we are taking
into account is non-Markovian, it is usual practice to
choose the noise source to be Markovian. This is not
the most general noise that we can consider, but it gives
a reasonable representation of many physical processes
[3,7-9]. It has also the advantage of reducing the
mathematical complexity. With those assumptions and
the requirement of stationarity, there is only one choice,
namely, the Ornstein-Uhlenbeck process. In addition, this
selection yields the right white noise limit and allows us
to correlate our results with previous ones. As usual, we
assume that it has zero mean, and correlation

(e(t)e(t))y = 2% exp[ - @} : 2)

here D denotes the noise intensity and 7 is the correla-
tion time.

The interpolation scheme [11] arises from a path inte-
gral point of view through the consideration of the exact
Lagrangian associated with the non-Markovian process
represented by Eq. (1) [10]. In the limits 7 — O (white
noise) or 7 — oo, the problem reduces to Markovian
forms, and it is possible to obtain the Fokker-Planck
type Lagrangians associated with each case. The aim
of the interpolation procedure is to get a Lagrangian of
a Markovian Fokker-Planck form, which becomes exact
in the above mentioned limits, offering a reasonable
description for the intermediate correlation time regime.
This is accomplished by considering a Lagrangian
with an interpolation function that fulfills particular
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limit conditions assuring that the exact Lagrangians are
recovered in the limits of white noise and very large
correlation time. The Markovian SDE and the Fokker-
Planck (Stratonovich sense) equation associated with this
interpolating Lagrangian are

y = fOMOlrf' 0] + VDol f'(MIE@),  (3)

oLP(y,1)] 9 /
e MULU L)
+ DOLrf' WO O IPi(y. 1)
2
=0 (P Ow0.). @
where &(¢) is a white noise source [(£(7)) = O,

EMEWR)) =28 — t')] and O[7f'(y)] is the inter-
polating function, fulfilling the limit properties

lim olmf'(M] =1,

lim O[7f'(y)] = ~[7f' ]

The model equation that we consider in this work is

()
(6)

% —x+ Aax(1 —x) + x(1 — x)e(r), (D

which follows from a particular genic model [5] or from
a chemical reaction [2,3], where €(¢) is an Ornstein-
Uhlenbeck noise.

In order to apply the interpolation procedure, we make
the change of variables

y =In(7"—). ®)

so that the original multiplicative SDE (7) becomes the
SDE with additive noise

X =

y = —sinh(y) + A + €(z). 9)

For the sake of mathematical simplicity, we consider

FIG. 1. Phase diagram of the system. The full line is the
interpolation result and the dotted line the small correlation time
result of Refs. [3,5]. F'1 denotes the monostable phase and F2
the bistable one. The stationary distributions corresponding to
values of D and 7 denoted by the points a, b, ¢ are shown
in Fig. 2. The inset exhibits in detail the reentrance zone; the
horizontal thin line corresponds to the path taken in Fig. 3.

the so-called symmetric case, that is, we assume A = 0.
Hence, by choosing the family of interpolating functions
[11]

1 + c[7cosh(y)]
1 + c[7cosh(y)]?’

where ¢ is the parameter that generates the different func-
tions, it is possible to write the Fokker-Planck equation
(4) and from it to obtain the following stationary proba-

olr,yl = (10)

| bility distribution in terms of the original variable x:

N [4x2(x — 1)? + c72(1 — 2x + 2x%)?]

pst(x) =

(1 — 2x + 2x2)2

x(1 — x) [4x2(x — 1)2 — 2c7mx(x — D1 — 2x + 2x2)]

cT

SO 1
P D 2¢x(1 — x)

8x2(x — 1)2

1 +c¢
— 3 Inf1 — c7
c’r

T - x))j”’ (b

where N is a normalization constant. |
In the absence of noise, the deterministic equation
associated with (7) can be exactly solved, rendering a
solution that presents only one stable equilibrium point
at x = 1/2. In contrast, when a noise source is present,
depending on the values of noise intensity as well as on
the correlation time, the stationary distribution presents
an isolated maximum at x = 1/2 [the monostable phase
(F1)] or two maxima located symmetrically around x =
1/2 [the bistable phase (F2)]. The transition from a
monostable to a bistable state is solely produced by the
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existence of the noise source [2,3]. In previous works,
the existence of this transition was recognized, although
the studies were carried out only in the limit of small
correlation times. However, our approximation allows us
to obtain the complete phase diagram. The transition line,
indicated in Fig. 1, is given by

4(1 + 27 + 72)
1+ 37

D = (12)

This result gives the exact white noise transition point,
and the particular value of the interpolation parameter,
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chosen to be ¢ = —1, renders a transition line whose
slope at the origin agrees with those obtained in previ-
ous works in the small correlation time regime [2,3,5].
It is worth remarking that, with this value of c, the in-
terpolation procedure coincides with the UCNA (Unified
Colored Noise Approximation) [12].

Together with the results coming from the interpolation
procedure, we have performed computer simulations of
the Markovian system of equations equivalent to Eq. (7)

in order to obtain the stationary distribution for the points
a, b, c indicated in Fig. 1, and to verify the behavior
predicted in the phase diagram [Fig. 2(a)—2(c)].

The phase diagram makes it apparent that, for some
regions of values of noise intensity (32/9 < D < 4) and
for zero and small values of correlation time, the system
is found in a monostable phase (F1). After increasing the
correlation time beyond some threshold value, the system
undergoes a transition to a bistable phase (F2). However,

1 n

0.0 0.4

FIG. 2. Stationary distribution for different values of the parameters.
realizations); the full line corresponds to the interpolation result. (a) D = 2,7 = 2 (monostable); (b) D = 10,7 =

D = 10,7 = 10 (monostable).
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The circles are the results of the simulations (100000
1 (bistable); (c)
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if we further increase the correlation time, the system
goes back to a monostable phase (F1). This remarkable
effect of reentrance can be seen in Fig. 3, where we have
depicted only the tops of the stationary distribution in
order to make apparent the transition phenomenon (as we
are looking at a parameter zone near the bottom of the
transition line, the existence of several maxima in the
distribution is only visible in this way). We interpret
this reentrancelike result as a manifestation that, in the
long correlation time limit 7 — o, we essentially recover
the deterministic behavior [9]. At this point it is worth
noting that a related reentrance effect, albeit in a different
context, has been recently found in Ref. [13]. There the
authors studied a spatially extended system (while our
system is zero dimensional), and only white noise was
considered, rendering a true phase transition.

The present result, supported by numerical evidence,
confirms the capacity of the interpolation scheme to cap-
ture the essential features of colored Ornstein-Uhlenbeck
noise within a tractable Markovian approximation.

A question to be raised is if similar peculiarities can
be found in other models submitted to such a noise
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FIG. 3. Reentrance effect. Plot of the top of the stationary
distribution obtained with the interpolation scheme (arbitrary
normalization) as a function of the correlation time. The noise
intensity is D = 3.8. It is possible to see the succession of
phases FF'1 — F2 — F1 as the correlation time is increased.
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source or for other colored noise sources. This problem
will be the subject of further work. However, the most
relevant question is if this phenomenon will happen in
real physical systems. We expect that the present result
will stimulate the experimental search for this effect.
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