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Boltzmann Fluctuations in Numerical Simulations of Nonequilibrium Lattice
Threshold Systems

John B. Rundle
Department of Geological Sciences and CIRES, University of Colorado, Boulder, Colorado 80309

William Klein
Polymer Center and Department of Physics, Boston University, Boston, Massachusetts 02215

Susanna Gross
CIRES, University of Colorado, Boulder, Colorado 80309

Donald L. Turcotte
Department of Geological Sciences, Cornell University, Ithaca, New York 14853

(Received 20 March 1995)

Nonequilibrium threshold systems such as slider blocks are now used to model a variety of dynamical
systems, including earthquake faults, driven neural networks, and sliding charge density waves. We
show that for general mean field models driven at low rates fluctuations in the internal energy field
are characterized by Boltzmann statistics. Numerical simulations confirm this prediction. Our results
indicate that mean field models can be effectively treated as equilibrium systems.
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Slider block models [1—5] are simple examples of
driven nonequilibrium threshold systems on a lattice. In
addition to simulating the aspects of earthquakes and
frictional sliding, these models may also represent the
dynamics of neurological networks [6] and sliding charge
density waves [7]. Given the importance of these systems,
a basic question is whether any of these nonequilibrium
lattice models exhibit similarities to equilibrium systems.
If these systems possess any kind of stable, time-averaged
energy distribution function, standard techniques and
methods of equilibrium statistical mechanics might then
be available for use in analysis of simulation results and
interpretation of system dynamics.

To our knowledge, previous work on these models has
focused almost exclusively on the critical phenomena as-
sociated with clusters of failed points. Scaling in the clus-
ter numbers has been compared directly to the scaling
observed in the Gutenberg-Richter magnitude frequency
relation for earthquakes. It is known [8], however, that
critical phenomena observed with percolation clusters in
Ising models need have no relation to critical behavior of
the magnetization. A percolation transition of clusters in
an Ising model can be observed at infinite temperature,
even though the correlation length of magnetic Auctua-
tions is small or even zero. A fundamental question is
whether scaling of cluster numbers in slider block mod-
els is related to critical phenomena in the underlying or-
der parameter, which is the lattice-averaged stretch of the
loading springs (the slip deficit). A relationship between
critical phenomena in the clusters and critical phenomena
in the slip deficit might then be established, if it could be
demonstrated that fluctuations in the driven lattice models

are isomorphic to the Boltzmann fluctuations characteriz-
ing equilibrium systems.

To summarize our main result: We have found broad
classes of lattice models that possess stable energy dis-
tributions. For nearest neighbor slider block simulations,
the block energy distribution is a generalized Boltzmann
function as the model approaches mean field, where Auc-
tuations are minimal.

Consider a typical equilibrium system for which ET =
const, except for small fluctuations [9], the mean square
probability of which decreases in magnitude as I/~N,
where 1V is the number of particles (or degrees of freedom
or modes). The internal energy E; of each independent
field variable (molecules, spins, etc.) executes small IIuc-
tuations about the time-averaged mean energy. Assum-
ing that the system obeys the postulate of equal a priori
probability, the method of most probable distributions [9]
can then be used to show that the expected distribution of
block energies is closely related to a Boltzmann distribu-
tion. We begin by dividing the possible energy states into

(q = 1, . . . , Q) energy bands E(q) occupied with proba-
bility p(q):

(1)
g p(Eq)E~ = ET = coilst.

q
Most slider block models oscillate around a fixed value

of energy. Consider a simple cellular automaton (CA)
model [2,5], in which N massless blocks are connected
by a network of nearest neighbor coupling springs K~,
and to a loader plate by a spring of constant EL. The
loader plate translates at a velocity V, increasing the
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force on each block as time passes. Block i possesses
both a force threshold o. and a nominal residual force
o.~. Blocks move when the force on the ith block o.;
equals or exceeds the threshold. Farther neighbor models
can also be implemented to represent elastic continua [3]
using long range coupling springs whose spring constants
decay with distance r as I /r . An advantage of massless

!

CA models is that the dynamics of large N models

can be examined on modest workstations, which can be
important when correlation lengths are large and finite
size effects are important.

The Hamiltonian [3,4] for a slider block model with
arbitrary range interactions having coupling springs of
fixed strength K~ and driven at velocity V can be written
in the form

H(4, 4) = (I/2)P &~(4 —Vr)'+ (I/2)&c g [0, —0 l'. , (2)

where KT is the total spring constant (KT = Kl + 2dKc,
d is the dimension of space). The sum over i is over
all sites in the lattice, and the sum over j is over all
interacting blocks within the range of interaction R but
excluding site i The s. lip deficit P;(t) = s;(r) —Vt; s;(t)
is the slip of block i at time t In (2),. the modification

@;~ @; —V r from the usual slider block Hamiltonian
[3] has been introduced [10] for dynamical simulations
in which a nonzero loader plate time scale 7. exists.
Physically, the plate must move to store energy in the
system before slip of a block can occur. The force (stress)
cr; on block i is

o-; = BH/BP;—

+ &c g [4g —4 1 + &I.«. (3)
j=int

The first terms in brackets describe the force in the springs
at time t~ the last term is the stress that is produced on one
loader plate update and can be thought of as a "prestress. "
In the following, we specialize for models with V ~ 0,
in which only one avalanche occurs following each loader
plate update.

For CA models, a rule to generate the dynamics must
be specified. The simplest example is the modified Mohr-
Coulomb friction law, in which each block has a static
failure threshold o. , and a residual stress o.~ at which
the block sticks. The basic dynamical equation is

s;(t + 1) = s;(r) + J(o-;)O(o-; —rrF), (4)

where O(x) is a Heaviside step. This jump function J(o.;)
can be either deterministic or stochastic. Previous work
has focused primarily on deterministic models. Examples
[2,3,5, 11—13] of deterministic jump functions include

Ji = (o.; —o. )/KT, (5)
J. =( '- ')/~. ,

where o is a residual stress. This expression is valid
also for a model with longer range springs (interactions),
in which each block interacts with Ng other blocks via
springs with spring constants K~. Each block jumps from
its current stress at failure to the position having the
specified residual stress o, thus (4) and (5) are examples
of a deterministic rule.

Recent work has shown that models using the J2 jurnp
function give rise to periodic behavior [12,13]. We expect
that deterministic models using the J~ jump, but with
weak coupling, will also be periodic. In order to satisfy
the postulate of equal a priori probability, the system must
be allowed to explore phase space. We focus on models
that have a stochastic character, and one of these [14] is
used here. For this model, the jump is

J, = J)(1 —Wp),

where 0 ~ W ~ 1 is a noise amplitude, and p is a
uniformly distributed random number on p H [0, I].

The slip deficit @;(r) of a block fiuctuates around a
time-averaged value rj; = P;. The fiuctuating part P;(t)
is defined by p;(t) = ql; + p, (t) The Ham. iltonian (2)
with V ~ 0 can be written as H(@, p) = Hp(rl, g) +
H~(rl, p) + H'(p, p). Taking the time average of H,
we observe that Ho = Hp, H~ = 0, H' 4 0. Hp is a
constant, H~ executes small fluctuations about 0, and
H' fluctuates about a nonzero value. Our interest is in
the nonzero time-averaged occupation numbers nq for
the various energy bands centered on Eq, so we focus
attention on H' and define H' =—g nqFq Assuming.
that all configurations have equal a priori probability, the
probability density function (PDF) of individual springs
is Gaussian in P. The total energy of v identical
independent springs [15] is then ~2 distributed with p

degrees of freedom. In particular, the energy in a pair of
springs is Boltzmann distributed. The PDF for our model
in mean field can then be obtained as the g distribution
in total energy Fq with 4 degrees of freedom.

As in the Boltzmann transport theorem from kinetic
theory [9], we expect the property of microscopic chaos
will exist in slider block models when the interaction be-
tween neighboring blocks is large enough to self-organize
the blocks against the competing stochastic noise from
the block jumps. Some level of stochastic noise must be
present, particularly for small values of K~, to prevent the
blocks from phase locking into a limit cycle [12,13]. Since
R = (Kc/Kl )' is a measure of the range of interaction,
models with large values of R display mean field charac-
teristics. Mean field models with a given noise level are
more likely to demonstrate Boltzmann statistics: These
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models are associated with decreasing amplitude Auctua-
tions at all but the largest wavelengths, thus the assumption
that gq nqEq = const is more likely to be valid.

We have carried out a number of stochastic simulations
on a square lattice with nearest-neighbor interactions us-
ing (6). For convenience we normalize the time-averaged
fluctuation f;(t) to unity by defining the variance ~; of the

fluctuation cu; = P;, so that P,'(t) = t/t, (t)/cu; On. an in-
finitely largelattice, g; = g = const, cu, = cu = const,
but the presence of finite boundaries causes g; and ~;
to vary spatially. We therefore accumulate time-averaged
statistics using the normalized energies H; (I/t, ', p~) to con-
struct the time-averaged, cumulative distribution function
for the block energies, and to plot the lattice-averaged en-
ergy against time. Operationally, we define 10000 energy
bands centered on each Eq (q = 1, . . . , 10000) and, upon

termination of all block motion, count the number of block
energies falling into each narrow energy band following a
loader plate update. Defining p(Eq) = nq/N, the proba-
bility of a block being in the energy band centered on Eq
is Eqp(Eq), the g distribution [15] with v = 4. Since
p(Eq) = (I/e) exp[ —Eq/E], the cumulative distribution
function (CDF) P(E') is obtained:

Et
E' exp[ E']d—E'

= 1 —(1 + E') expI —E'],
where E' = E/e. Defining the lattice average of the block
energies H," at fixed time t by (H"(t)), we obtain the
time-averaged energy per block e (= "temperature") as
e = (1/2)(H" (t)). With e fixed, Eq. (7) represents a pre-
diction, with no free parameters, of the energy distribution
obtained from simulation data.

Two examples of our simulations are given in Figs. 1

and 2. Simulations were carried out on a 100 X 100
square lattice of points, and in all figures KL = 1. In
Fig. 1, Kc = 1, TV = 0.8, and in Fig. 2 Kc = 50
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FIG. l. (Upper) Cumulative distribution function (CDF) of
block energies Eq from our simulation (dots) and prediction
(dashed line) using (7). (Lower) Lattice average of the block
energies (H "(t)) as a function of time. Mean energy e used in
constructing the dashed line in the upper figure is obtained by
averaging (H"(t)) over the time interval of the simulation, the
average value obtained being 2a. Parameters in this simulation
are K& = 1, KL = 1, and W = 0.8. Time-averaged energy
a = 3.605, o F = 35, and o-R 0.
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FIG. 2. Same as Fig. 1 with KL = 50, KL = 1, TV = 0.1,= 1.305, o. = 35, and o. = 0.
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0.1. For each case, the lattice-averaged energies (H"(t))
are measured at the time following each avalanche clus-
ter. These values, which fluctuate with time, are shown at
the bottom of each figure. The lattice-averaged energies
(H"(t)) shown in the figures are then averaged over time
to obtain the "temperatures" e for each simulation, to be
used together with (7) in calculating the CDF, the dashed
curve in the top panel of each figure. These dashed, the-
oretical CDF curves are then compared with the experi-
mentally determined CDF measured from the simulations
(dots). Agreement between theory and simulation data is
good in Fig. 2, less so in Fig. 1. As expected, models that
are closer to mean field (Fig. 2) are better represented by
Boltzmann statistics. In addition, we find that in mean
field the values of cu; and therefore a depend simply on
KT, (J2), and W, the exact expression depending on how
H' is scaled.

The results obtained here depend only on two condi-
tions: (1) The system executes small fluctuations around
a state of fixed internal energy, and (2) that enough noise
is present to allow the system to explore its phase space.
It can also be shown [14] that a separate condition re-
quires that the rate of forcing be low. Because the line
of reasoning does not depend on the massless nature of
the slider blocks, we expect that similar results will be ob-
served in massive slider block simulations [1,16] as we[I.
Since the noise amplitude required to generate the Boltz-
mann distribution decreases as mean field is approached,
we also predict that the amplitude of the external noise
should be vanishingly small in the mean field limit. The
problems of most interest to both earthquake scientists
[3,17] and neurobiologists [6] are in real systems with
long-range interactions, which are mean field. It is there-
fore likely that Boltzmann fluctuations will be important
in these systems, and that these may be the origin of
extended spatial correlations observed in real earthquake
fault systems [18,19].
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