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We study the dynamics of polymers in 2D periodic arrays of obstacles where a fraction (1 — c¢)
of the obstacles have been removed. As expected, we find Rouse and reptation dynamics for ¢ — 0
and ¢ — 1, respectively. However, we also find that the diffusion coefficient D decreases when we
start removing obstacles due to entropic trapping of the polymer within “pores.” These pores begin to
form large clusters when ¢ = 0.80, and D increases when c is decreased further. Our results clarify
the nature of the different regimes for a simple random environment and predict that D(c) can be a

nonmonotonic function of c.

PACS numbers: 83.10.Nn, 05.40.+j, 36.20.Ey

Muthukumar and Baumgartner [1-3] have shown that
polymer chains can be entropically trapped in “random”
environments. Under these conditions, the diffusion coef-
ficient D was found to decrease very quickly with molec-
ular size M, in agreement with a model which predicts
that diffusion is then governed by narrow passages which
reduce the entropy of the molecules when they move be-
tween the larger open areas or “pores” of the system. This
new phenomenon was observed in computer simulations
of the dynamics of non-self-avoiding [1] as well as self-
avoiding [2] chains in random environments composed of
monomer-size obstacles (placed randomly in space at a
concentration below the percolation threshold), and for en-
vironments composed of large empty boxes connected by
narrow channels [3]. Hoagland and co-workers [4,5] and
Maver, Slater, and Drown [6] observed a new regime of gel
electrophoresis where the mobility of long polyelectrolytes
decreases quickly with M ; both groups interpreted these re-
sults, which cannot be explained by standard models, as an
indication that polyelectrolytes such as DNA can become
entropically trapped in the larger pores of the sieving gel.
Rotstein and Lodge reported that for linear polystyrenes
diffusing in poly(vinyl methyl ether) gels, D scales roughly
as 1/M 27 which is consistent with the predictions of en-
tropic trapping [7].

However, the concept of a random environment is ill
defined and the conditions for which entropic trapping
dominates are currently unknown. Also, the transition
from entropic trapping to Rouse or reptation dynamics
is ill understood. Moreover, we also note that it is
uncertain whether the simulation conditions used by
Muthukumar and Baumgartner can be used to infer the
dynamics of polymer chains in real gels (this was also
noted in [7]); for instance, their distributions of block
obstacles do not support their own weight. A more
realistic gel would be more like the structures formed
by cluster-cluster aggregation, or similar diffusion limited
aggregation algorithms.

In this paper, we study the dynamics of polymer chains
in imperfect periodic arrays of obstacles. Our basic goal
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is to find the minimum degree of randomness required to
observe entropic trapping. We thus begin with a periodic
array of obstacles from which we remove obstacles at
random. This system possesses two main advantages:
first, the degree of randomness is directly controlled
by the concentration of obstacles, and, second, the low
and high concentration limits should automatically yield
the Rouse and reptation dynamics, respectively. We
find that entropic trapping begins essentially as soon
as we create pores; this means that very little disorder
can lead to nonreptative behavior. Our results differ
from those of Muthukumar and Baumgartner because
the large pores that we create by removing a few
obstacles are very far from one another; as a result,
D is found to actually decrease when the concentration
of obstacles is first reduced. This is a remarkable but
somewhat counterintuitive result of entropic trapping in
isolated pores. Finally, we find that entropic trapping
essentially ceases once the obstacles stop forming a
percolating cluster that limits the long-range diffusion of
the polymers.

We chose to study a two-dimensional (2D) system for
three main reasons: (i) 3D systems would require sub-
stantially more CPU time; (ii) it is somewhat easier to
visualize and quantify the dynamics in 2D in order to es-
timate of the degree of localization of the polymers; and
(iii) the excluded volume effect is more pronounced in
2D, which enables a better estimate of its impact on the
power law exponents. The four-site bond-fluctuation al-
gorithm [8] was used since it yields the proper 2D Rouse
dynamics for free self-avoiding chains. The obstacles are
represented by single squares, like the monomers them-
selves, and the rules which take into account the excluded
volume effects are identical for monomer-monomer and
monomer-obstacle interactions. The obstacles form a pe-
riodic lattice with lattice parameter g = 4. The results
presented in this Letter were obtained for ¢ = 4. A frac-
tion (1 — ¢) of the obstacles is removed randomly from
a 840 X 840 system, and periodic boundary conditions
are applied. The initial polymer conformation is genera-
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FIG. 1. Semilogarithmic plot of 4D vs obstacle concentration
¢ for polymer molecules of length (from top to bottom) M = 5,
8, 10, 15, 20, and 30, respectively. For clarity, the error bars
are included only for the M = 30 case, for which they are the
largest.

ted as a random chain of M monomers and M — 1 links
of length 2, and each simulation is preceded by a long
warm-up period. For ¢ = 1, the g = 4 lattice of obsta-
cles corresponds to a chain moving in a tight tube (the
dynamics is then qualitatively like the one suggested by
the repton model [9]) and reptation behavior is found for
molecules as small as M = 5. The simulations were car-
ried out on three IBM as well as two SUN workstations.
The slope of the (r2(z)) vs t plot was used to obtain
4D(M, c), where r(z) is the displacement of the center of
mass of the polymer at time ¢; the relaxation time 7(M, c)
was obtained from the slope of the linear (long-time) part
of the In[C(z)] vs ¢ plot, where C(z) is the autocorrelation
function of the chain end-to-end vector.

Figure 1 shows how D varies with ¢ for polymer
molecules of size M = 5, 8, 10, 15, 20, and 30. We
notice a clear drop in the diffusion coefficient D(M, ¢) as
¢ decreases from 1.0 to about 0.9, followed by a marked
increase as c¢ decreases further. This nonmonotonic
behavior is quite surprising since it implies that, initially,
decreasing the number of obstacles actually hinders the
polymer’s ability to diffuse through the system. As far
as we know, this peculiarity of entropic trapping has
previously never been reported. This effect increases
with size M.

We also observe that the radius of gyration R, reaches
a shallow minimum around ¢ = 0.80 (R, decreases by
a few percent; results not shown); we attribute this to
the fact that the pores are not large enough for 2D
self-excluded polymer chains to collapse entirely within
them. The scaling law is consistent with R, o M", with
v = 0.75, for all concentrations.

The relaxation time 7 was also found to be a non-
monotonic function of ¢. An example is given in Fig. 2
where we plotted C(z) vs ¢ for ¢ = 1.0 and ¢ = 0.90
with M = 30. We clearly see that short-time relaxation
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FIG. 2. Autocorrelation function C(t) = (h(z) - h(0))/{h?) of
the end-to-end vector h vs time ¢ for a polymer molecule of size
M = 30 and two different concentrations c¢. The inset shows
the ratio D7/(R,)* vs concentration ¢ for M = 10, where 7 is
the terminal relaxation time of C(t).

is faster for ¢ = 0.90, but that long-time relaxation is
slowed by the disorder present in this more dilute sys-
tem. This effect disappears for ¢ < 0.8. The crossover
is found here at time ¢ = 500 X 2500. Using the value
D(M = 30,c = 0.9) = 15 X 1079, this corresponds to
a mean drift of about (DT)I/2 = 4.3 lattice units, while
R, = 11.7 for this polymer and the minimum pore size
created by a single missing obstacle is about a = 3 units
in radius (hence the polymer is not entirely trapped inside
the pore). Therefore, we conclude that for ¢ = 0.90 the
polymer relaxes faster on length scales smaller than the
pore size a, but that partial trapping by the pore greatly
slows down the relaxation over length scales compara-
ble to R,, presumably because the interaction between
the pore and the molecule does not allow the latter to ro-
tate very easily. The inset shows how the ratio D7/(R,)?
varies with ¢ fora M = 10 molecule. We find a decrease
by a factor of 5.4 at around ¢ = 0.8; the polymer then
migrates over a distance much smaller than its own di-
mensions during the relaxation process, an indication that
it is strongly localized.

Entropic trapping has been traditionally studied in
terms of the dependence of the diffusion coefficient
D (M, ¢) upon molecular size M. Figure 3 shows how the
exponent «, implicitly defined by D o« M~ <, varies with
¢ (the inset shows, as an example, our data for ¢ = 0.90).
We observe that o = 1.89 for ¢ =1 and a = 1.04
for ¢ = 0, consistent with the well-known reptation and
Rouse limits, respectively. However, we also observe that
a > 2 when 0.90 > ¢ > 0.40 (this is characteristic of
entropic trapping [1-5]), with a maximum value of 2.44
at ¢ = 0.80.

Thus the first three figures show the existence of a
broad intermediate regime, between the Rouse and rep-
tation limits, where D is lower and more molecular size
dependent than expected. Moreover, this regime is char-
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FIG. 3. Exponent « vs concentration ¢. The exponent was
obtained from a regression analysis of the diffusion coefficients,
on a log-log plot of 4D vs M, using the form D « M~¢
(the inset shows an example for ¢ = 0.90). The error bars
correspond to a 90% confidence level.

acterized by a relaxation process which is fast over a
length scale fixed by the typical pore size, but has a slow
component for longer length scales. Curiously, our results
also indicate that the intermediate regime disappears when
¢ decreases below about 40%, almost irrespective of the
size M of the diffusing molecule. Figures 1 and 3 suggest
that this intermediate regime exists even for ¢ very close
to unity.

In order to investigate the nature of this intermediate
regime, we computed the number of times the four
middle monomers of a M = 10 polymer chain visited
each site in a reduced (96 X 96) lattice. Figures 4(a)—
4(e) display our results in the form of density plots.
The sites are shaded such that the most visited ones
are darker; moreover, the sites are grouped such that
the monomers actually spend 25% of their time on each
of the four distinctly grey shaded areas. Five different
cases are shown. When ¢ = 0.90, the polymer spends
25% of its time in or around the few pores that have
been created: Those empty sites, which cover less than
2% of the total surface, thus act like deep, isolated
“entropic” traps. Note that the molecule must reptate
between each trap since the gel concentration is unity
in these regions. For ¢ = 0.80, the number of pores is
larger, but theses pores are still isolated and trapping is
still very strong. For a more dilute system (¢ = 0.60),
many pores are connected by wide passages that begin
to form a percolating path through the system. At c =
0.40, the lattice of obstacles is dilute and the obstacles
stop forming percolating clusters that can hinder long-
range diffusion. Finally, when the concentration is small
(¢ = 0.10), the obstacles play only a minor role (the pores
percolate through the system) and one recovers Rouse
dynamics with little entropic effects. These results are
in agreement with the quantitative results presented before
and explain why entropic trapping disappears for the same
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concentration (40%) for all molecular sizes: This critical
concentration represents the percolation threshold of the
underlying lattice of obstacles for this geometry [10].

Our simulation results indicate that the diffusion coef-
ficient of a flexible macromolecule is not necessarily a
monotonically decreasing function of the density of the
medium. This new prediction is directly related to the
entropic properties of flexible polymers in random envi-
ronments, and to the nature of the randomness (and the
percolation limit) of this environment. Saxton has re-
ported that, in some fractally random systems, the diffu-
sion constant of spherical particles can be independent of
the size of the particle [11]. It is not inconceivable that
there exist other types of random environments where the
diffusion coefficient might become a nonmonotonically
decreasing function of the molecular size of the polymer.
There have been a few reports where the electrophoretic
mobility of polyelectrolytes shows such behavior [12,13].

The diffusion properties of macromolecules are influ-
enced by the precise architecture of the environment and
of the molecule itself. This means that one must be care-
ful when analyzing experimental data since nontrivial re-
sults, such as those presented here, can occur. The system
we studied could be tested using the “2D arrays of posts”
of Volkmuth and Austin [14].

Our results also indicate that very little randomness is
required to kill reptation. In fact, we already have very
strong entropic trapping for ¢ = 0.97 (results not shown).
At this time, we are studying the stability of reptation vs
the degree of randomness in our system. It appears that
reptation is an intrinsically unstable process in a dense,
random frozen environment; i.e., the chains become easily
trapped within large pores and this dominates the long-
term diffusion of their center of mass. The situation
for very large molecules, which can span the distance
between two large pores, should be most interesting
since it is uncertain as to whether these molecules will
reptate or will become trapped (or pinned) by many pores
simultaneously.
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The small white squares are centered at the location of the obstacles. The monomers visited each of the four grey shaped regions
for an equal period of time. In the following, we give the fraction (in %) of the total surface area covered by each of the four
regions (from light grey to black) as a measure of the degree of localization of the polymer; for a trapping-free case (e.g., when
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FIG. 4. Density plots showing the number of times the (four) middle monomers of a M = 10 polymer molecule visited the
different sites within a 96 X 96 lattice (with periodic boundary conditions). The darker lattice sites have been visited more often.
The small white squares are centered at the location of the obstacles. The monomers visited each of the four grey shaped regions
for an equal period of time. In the following, we give the fraction (in %) of the total surface area covered by each of the four
regions (from light grey to black) as a measure of the degree of localization of the polymer; for a trapping-free case (e.g., when
¢ = 0.0), these fractions would be 25:25:25:25. (a) ¢ = 0.90; areas=71:19:8:2. (b) ¢ = 0.80; areas=73:16:7:4. (¢) ¢ = 0.60;
areas=068:18:9:5. (d) ¢ = 0.40; areas=56:21:14:9. (e) ¢ = 0.10; areas=40:23:20:17.



