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Determination of Magnetostrictive Stresses in Magnetic Rare-Earth Superlattices by a
Cantilever Method
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The magnetostrictive stress for a Ho6/Y6 superlattice has been determined at low temperatures by
means of a capacitive cantilever technique. The magnetostrictive stress responsible for the basal plane
distortion is found to be strongly enhanced with respect to bulk holmium. An explanation accounting
for the unusual thermal dependence of that stress is offered.

PACS numbers: 75.50.Rr, 75.80.+q

Magnetic rare-earth superlattices are a subject of great
current interest [1—7]. Two features are remarkable in
these artificial structures. First of all, helical magnetic
order is found to propagate through nonmagnetic layers.
This effect has been explained within the framework of
the RKKY interaction through a spin density wave and
the discreteness of the interleaving material which pro-
duces an increase of the magnetic period (aliasing effect)
[8]. Also, discretness in the spin distribution increases
the range of the interaction [8]. Second, different mag-
netic phases are identified in the superlattices when com-
parison with bulk is made. The strain induced in the
crystalline structure by the mismatch between layers of
different elements is thought to be responsible for such
new magnetic behavior. The strain can couple to the mag-
netization either by modifying the indirect exchange, as
was suggested to explain the suppression of the conical
c-axis ferromagnetic transition in Er/Y [2], or by alter-
ing the energy balance between the exchange and mag-
netoelastic contributions. The latter mechanism accounts
for the suppression of the ferrohelix first order transition
in Dy/Y [3], where the Dy lattice is expanded, and for
the enhancement of the Curie temperature in Dy/Lu [4],
where Dy lattice is compressed. Similarly, while in Ho/Y
the c-axis cone phase is suppressed and the critical fields
are larger than in bulk [5,6], in Ho/Lu ferromagnetic or-
der is observed below 30 K within Ho blocks contain-
ing less than 20 atomic planes [6,7]. Thus the knowledge
of the magnetoelastic properties, which could provide the
key to the epitaxial strain role in the magnetic behavior, is
essential for a complete understanding of the magnetism
of such new artificial materials. To date, magnetoelas-
tic measurements in thin films and multilayers have been
performed on polycrystalline or amorphous samples ei-
ther directly, by means of the cantilever technique (at
room temperature [9] and in situ at the growing cham-
ber [10]) or indirectly, by studying the effect of stress in
some magnetic properties (e.g. , anisotropy field [11] and

strain modulated ferromagnetic resonance [12]). In this
paper we report on the first direct measurements of rnag-
netostrictive stresses on magnetic superlattices by using a
capacitive cantilever technique.

A [Ho6/Y6]too superlattice was grown by molecu-
lar beam epitaxy using a Balzers UMS 630 facility.
The rare-earth metals grow epitaxially onto a Nb metal
layer deposited on a sapphire substrate [5]. Both the
body-centered-cubic Nb and hexagonal-close-packed rare-
earth (RE) metals grow with their respective close-packed
atomic planes parallel to the substrate plane. The epitaxial
relationships are j1120)A120s ))1110)Nb()(0001)RE, result-
ing in the a axis of the rare earth at an angle of 5 with
[0001] A1203. The crystalline structure of the superlattice
was investigated using a triple-crystal x-ray diffractome-
ter, giving an interface width of 2 lattice planes [5]. The
sapphire substrate, with initial thickness of 500 p, m, was
thinned down to 150 p, m to increase the sensitivity of the
cantilever method. The metallic superlattice acts as the
central electrode of a three terminal differential capaci-
tance cell. The cell was made in copper and annealed at
800 K to improve its behavior under thermal cycling. The
capacitance measurements have been performed by using
a AIL Ltd. commercial ratio bridge, with phase sensitive
detection. The sensitivity is 10 pF, which allows us
to detect deAections of =10 nm for a sample length of
10 mm.

We will analyze the rnagnetoelastic measurements de-
scribed below in terms of the deformation of the mag-
netic superlattice, as has been done when the cantilever
method is employed. However, the existing relation-
ships [13] linking magnetostriction, magnetoelastic stress,
and deformation of the cantilever plate are only valid
for polycrystalline films deposited onto isotropic sub-
strates. For our derivation of expressions adequate for
anisotropic systems, such as sapphire (orthorhombic, class
3m), we apply the theory of pure bending of plates [14].
It is assumed that for thin plates the stress components
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o.;, (i = x, y, z; the z direction being normal to the plate
surface) are zero and the strains on the plane e;j (i, j =
x, y) are proportional to the curvatures: e„=z/R, and

eYY
= z/RY, where 1/R, and I/R~ are the curvatures

in the x-z and y-z planes. Then o.„=(C„/R +
C,Y/RY)z and o.

~~
= (C~~/R~ + C,Y/R, )z, where the

C;~ stand for combinations of sapphire elastic constants
related to a coordinate system in which x and y directions
correspond to the b and a superlattice axes, respectively.
Now, to obtain the relationship between curvatures and
magnetoelastic strains we will minimize the energy of the
system, i.e., sapphire substrate plus superlattice. The elas-
tic energy of sapphire is

1 (C,. 2C.y Cyy &

2 (R~ RyR R2) " ' 3
(I)

where a and h„are the area and thickness of the sap-
phire substrate, and p is defined in such a way that ph„
is the distance from the neutral surface to the superlattice
surface. The elastic and magnetoelastic first order contri-
butions to the energy density for the superlattice is e, ~

=
(I/2)c;, kate;~eqi

—B;Je;~n;n~, where c;~k~ are the elastic
stiffness constants, o. ; the direction cosines of the magne-
tization, and B;~ magnetoelastic coefficients. Notice that
e, ~ must be invariant under the symmetry operations of the
D3h group corresponding to the hexagonal-close-packed
structure. Since the superlattice thickness h, i is negligi-
ble compared to the sapphire one, we have assumed that
the deformation is uniform in the superlattice. Taking
z = ph„ in the strain expressions, we obtain for the su-
perlattice e„=ph„/R, and eY~

= ph„/RY. When the
magnetization is along the easy direction, we obtain e« in
the superlattice by minimizing e, i, where the above values
for e and Eyy are used. The total energy of the system
is contributed by the magnetoelastic energy of the super-
lattice and by the elastic energy of the sapphire, the elastic
contribution being negligible for the superlattice and then
neglected. Now, minimizing the total energy with respect
to p, 1/R„and 1/RY we get p = 2/3 and

1 1 h„fC, Cxy)g+ —B~= —" "+ ', (2a)
4 6 h~~(R, RY)

1 1 h2, (CyY Cxyg ——Bi' = —" +, (2b)
4 6 hl(R, R~)

where 8 is a combination of n-magnetoelastic and elastic
constants of the superlattice. From Eq. (2) we obtain the
value of the magnetoelastic coupling parameter B~ by
experimentally determining 1/R and 1/RY. It is worth
noting that by using the present technique B~ is directly
obtained and no knowledge of the elastic constants of the
superlattice is needed. This is important if one considers
the difficulty of determining such constants and that bulk
elastic constants are not applicable to superlattices [15].

2eoh„f A, AC„Ab&Cb ~
(3)

where C, and C~Y are calculated from Ref. [16].
It is worth mentioning that the differential thermal

expansion of superlattice and sapphire induces an initial
curvature so that the Co value is altered with respect to
the ideal value considered for parallel capacitor plates.
Nevertheless, it is easy to show that this effect on the
B~ parameter is negligible because it is obtained as the
difference of two values which are modified in the same
way by the differential thermal expansion. Both values
are modified almost equally because the thermal expansion
coefficient for the basal plane of the superlattice is isotropic
and h„» h, i. Also the dielectric constant of sapphire
does not appear in Eq. (3) because the dellection is small.

Low temperature magnetoelastic stress measurements
were performed in the [Ho6/Y6]tpo superlattice between
10 and 140 K. The magnetic field, produced by a
12 Tesla superconducting coil, was applied along the easy
b direction. Each isotherm was obtained after annealing
at temperatures within the paramagnetic state. In Fig. 1

we show the magnetoelastic stress isotherms obtained
with the sample clamped along the a and b axes.

In bulk Ho, below the Neel temperature, T~ = 133 K,
the moments are ferromagnetically confined to the basal
plane forming an helical structure with the magnetic
modulation wave vector along the c axis, which is reduced
on cooling. Below the Curie temperature, T~ = 20 K,
the moments tilt out of the basal plane to form a cone
structure [17]. In bulk holmium and other rare-earth
metals the breakdown of the helical spin state to reach
a structure of spins parallel to the field is accompanied by
a large increase in the strain [18]. We find the same effect
in the superlattice (see Fig. 1). At low temperatures the

Equations (2) hold for a free superlattice. In our case the
sample is clamped by one of its edges. This condition
imposes that the clamped edge does not undergo vertical
displacement and remains horizontal in the deformation.
Therefore we can assume that the curvature of the plate
is produced in the plane perpendicular to the clamping
line. So that for the sample clamped along a direction we
use Eq. (2a) putting 1/RY = 0, and we relate o., =—S +
Bi'/4 with 1/R . Conversely, Eq. (2b) with 1/R, =0
is used for clamping along the b direction, and we
obtain another relation between ob—= 8. —B~/4 and
I/R~. The curvatures are determined by measuring the
respective capacitance changes and using the expression
AC = COL —/6enAR, valid for small dellections, where
Co is the zero-field capacity, eo is the permitivity of
vacuum, and L, A, and 1/R are the length, area, and
curvature of the plate. Thus the expression of B~ is
obtained in terms of the different experimental values for
both kind of measurements, i.e., a sample clamped along
a and b directions, in the form
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FIG. 1. Magnetoelastic stress isotherms: o and O.
b corre-

spond to clamping along a and b superlattice axes. Inset shows
the magnetic phase diagram obtained from magnetostriction (&&)

and magnetization (~ ) measurements (B are the phase transition
fields).

sudden onset of the stress and saturation, at a critical field
B„is interpreted as a direct transition to a ferromagnetic
state. As the temperature is raised, we observe that the
strain increases less abruptly, although changes in the
slope can be detected. We interpret these changes in
terms of the field distortion of the helix producing a fan
structure at B,], and a ferromagnetic nonsaturated state
is reached above a field B,2. For the present sample,
T~ values of 95 and 108 K have been determined from
neutron diffraction [5] and magnetization [6] experiments,
respectively. The isotherrns at temperatures close to Tz
depart from the expected B paramagnetic behavior for
fields above =5 T, likely as a consequence of short-
range magnetic order, the quadratic field dependence up
to 12 T being reached at temperatures above =135 K.
The phase diagram determined from the anomalies of the
gradient of the magnetoelastic stress curves is shown in
the inset of Fig. 1. We have also included the points
identified by magnetization measurements [6], which
closely agree with that determined by magnetoelastic
stress measurements. The fields below which the zero
field structure exists are much larger than in bulk Ho,
while the temperature dependence is weaker. The fan
structure appears above 40 K and remains stable in
progressively larger fields as the temperature is raised.

In Fig. 2 we plot the thermal variation of B~ at
the maximum applied field of 12 T and the one for
bulk holmium [19],Bb„~q(T), for comparison, normalized
to the corresponding Ho volume in the superlattice.

xx
0 1 x

x

0
0

x x x x
I

X

40 80 120

Temperature (K)

B~(T) = [M~(0) + D(0)e (T)]I I [m(T)]. (5)

We will show that the peculiar thermal dependence of
B~ below =100 K is due to that of eo, which below

FIG. 2. Thermal variation of the effective magnetoelastic
coupling parameter B~ for the [Ho6/Y6]100 superlattice ( ~ ).
For comparison, Bb„~k = Bq„~k(0)Isp[X '(m(T))] is shown
(X).
The B& values are enhanced with respect to those for
bulk Ho. Unlike the bulk case, the thermal variation
of B~ does not follow the I5I2[m] =— IqIz[J' '(m(T))]
standard Callen and Callen law [20] at all [m(T) —=

M(T)/M(0) is the reduced magnetization]. To explain
these results we will show how the epitaxial strain
affects the magnetoelastic coefficient. An enhancement
of this coefficient has been also observed in isotropic
multilayers [12] and surfaces [21] under tensile stress.
This is consistent with our case, in which thin Ho films
are decoupled by interleaving films of Y.

Sun and O'Handley [21] argued that the presence of
strains of —1% modifies the magnetoelastic coefficients.
So, we assume that their effective form, expanding in the
strains is:

B;,(T) = M;J(T) + D;qgt(T)el, t, (4)

where M;~ = (B;)),„,=o and D;~kt = (r)B,;)r)eqt)„, =o
These may involve both surface and volume contributions.
Thus the thermal dependence of B;~ arises from that of
the magnetoelastic coefficients M;j and D;jp~, as well as
from the variation with temperature of the epitaxial strain
due to the lattice misfit between Ho and Y layers. As
well as the strain linear term, the strain quadratic term in
the magnetoelastic Hamiltonian is written as a product
of isomorphous irreducible representations of the same
second order spin operators times second order strain
polynomials [22], and then we will have the same Is~z[m]
thermal variation for M;j as for D;jt,~. The mismatch
between bulk Ho and Y, eb, at room temperature is —2%,
the basal plane of Ho being stretched with respect to the
bulk. The total strain e;, is contributed to by the epitaxial
strain e;; and the magnetoelastic strain e; . On the

ep ep
basal plane exx = Fyy = Eo and e,'P is deduced from the
strain-stress relations taking o.« = 0. Also eo » e; is
assumed. Then, we can write
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FIG. 3. Temperature dependence of the bulk Ho and Y
mismatch strain, eb (line), calculated from the respective a
lattice parameters thermal expansion data [19,23]. Also shown
is the epitaxial strain, eo, thermal variation ( ~ ).
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