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Strongly Inhomogeneous Surface Growth on Polymers
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We study nonlinear surface growth driven by spatially localized noise, a model that can be mapped
onto directed polymers with random contact interactions. These systems are asymptotically free and
show nonperturbative strong-coupling behavior on large scales in one dimension; hence they are
possibly the simplest examples with these properties. The strong-coupling regime represents new
universality classes of directed growth and of polymer delocalization transitions, which we analyze in
detail.
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Growing interfaces are an important example of scale
invariance far from equilibrium. Their effective dynamics
on large scales of time and distance is governed by a
stochastic evolution equation for the height field h(r, t)
The Kardar-Parisi-Zhang (KPZ) equation [1]

B,h = —V' h + (rsth) + rI
2 2

(1)

driven by Gaussian white noise with g(r, t)ri(r', t') =
o6"(r —.r') 6 (t —t') [2] has become the "standard
model" for such growth processes due to its simplicity,
its wide range of phenomenological applications, and its
notable links with various other problems ranging from
the Burgers equation and turbulence to equilibrium sys-
tems with quenched disorder [3]. Above one dimension,
the KPZ equation shares with these theoretical cousins a
notorious difficulty: it has a strong-coupling phase that is
not accessible by standard perturbation theory [4]. In con-
trast, the asymptotic scaling exponents are known exactly
in d = 1, and there is even an exactly solvable lattice
model in the KPZ universality class [5].

In this Letter, we study an even simpler model of
directed growth, which has a nonperturbative strong-
coupling phase already in d = 1. This model is a
"dimensionally reduced" version of the KPZ equation
with strong spatial inhomogeneities. It has a locally
enhanced or reduced rate of mass deposition onto the
surface and completely localized Gaussian noise,

U(r, t) = p6"(r), ri(r, t)rl(r', t')

= o6"(r)6"(r')6(-t —t'). (2)

Equations (1) and (2) turn out to define a new universality
class which we analyze in detail below. Such inhomo-
geneities are of phenomenological interest; they can be
generated, e.g. , by a boundary of the system at r = 0.
The resulting growth is deterministic except at the "de-
fect" r = 0; in that sense, this model interpolates between
completely deterministic growth models and the standard
noisy KPZ equation.

Of equal importance is the representation of the model
as a directed polymer in equilibrium, given by the partition

function

Z(rI, tI) = 1
X)r exp

P

—Art(r, t) (3)

h(rf, tf) = —logZ(rI, tf), (4)

where Z(rf, tf) denotes the restricted partition sum over
all paths ending at a given point (rf, tI) [1]. The poten-
tial ri(r, t) models quenched point disorder that is localized
along the defect line r = 0 (in contrast to the standard KPZ
system where the point disorder is statistically uniform).
This system is closely related to wetting from a random
substrate [6,7], which in the simplest (1 + 1)-dimensional
case is described by (3) for an interface r(t) subject to the
additional constraint r(t) ~ 0. Equivalently, Eq. (3) de-
scribes a pair of directed chains with relative distance r(t)
and random contact interactions. This system has been
studied in a perturbation theory similar to the replica ap-
proach [8], which, however, does not give any information
on the strong-coupling regime. The interactions (2) be-
tween the chains arise, e.g. , if each chain is a random se-
quence of molecules of two different kinds which interact
attractively if they are of the same kind but repulsively if
they are of a different kind.

The approach of this Letter is twofold. We establish the
different universality classes by a field-theoretic renormal-
ization of the dynamic equation (1), and we obtain specific
information on the strong-coupling regime from studying
the polymer transfer matrix numerically in d = 1. Our
main results follow.

(1) The phase diagram of the model depends only on the
two effective interaction parameters Ao = (o /v )'
and p = vAopo with pp = p/(vo. )' and is shown
schematically in Fig. 1. (a) For Ao ——p = 0, the growth
model is linear and the polymer is a free Gaussian chain
[9]. (b) A small nonlinearity (Ap/2) (V'h)2 in the growth

in terms of the transversal displacement field r(t) The.
height field of Eq. (1) is then proportional to the "local
free energy,

"
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rule is a relevant perturbation for d ~ 1: It generates a
crossover to the strong-coupling regime. The crossover
length g is given by g —(Ati) 'l2 ' ") for d ( 1 and has
an essential singularity s —exp(const/At1) at the border-2

line dimension d = 1. For d ~ 1, a small nonlinearity is
irrelevant; the transition to the strong-coupling phase takes
place at nonzero threshold values ~Ap. In the polymer
picture, this perturbation corresponds to an unbiased ran-
dom defect, i.e., p = 0. Hence this scenario is in agree-
ment with Refs. [7] and [8], but differs from the results of
Ref. [6]. (c) As a function of p, the growing interface un-

dergoes a nonequilibrium phase transition that manifests
itself, e.g. , in the stationary growth rate 8,h in a system of
size L. In the thermodynamic limit I ~ oo, the growth
rate is independent of p for p p„but increases with p
for p ) p, . A similar transition has been found [10] for
ordinary KPZ growth with spatially homogeneous noise.
In the polymer system, this is a delocalization transition
driven by the average defect potential. For p )p„the
defect is effectively attractive and confines the polymer to
within a finite transversal distance $; for p (p„it is ef-
fectively repulsive and leaves the polymer in a deconfined
state. The critical value p, is zero in the weak-coupling
regime, but negative in the strong-coupling regime (which
corresponds to a defect that is on average repulsive).

(2) On the strong coupling -critical line p, (Ao), the
system is in a state of asymptotic scale invariance
but strongly broken translational invariance. For large
disorder, the disorder-averaged stationary polymer density
p(r) —= lim. . ., , p(r, t) in a system of transversal
size L (which is independent of the boundary conditions
at t; and tf) develops a downward cusp at the defect
and tends to a singular limit density p,*(r) —~r~ with
0 ) 0 as A ~ ~ (i.e., g ~ 0); see Fig. 1(a). This can
be attributed to anomalous scaling of the local contact

operator tri(t) —= 6"(r(t)),

(4)(I., i') = p(r = 0;L, i') —L '(-g/L)' —I.—

as g/L ~ 0. In the growth model, C1(t) corresponds
to the response field h(r = 0, t) defined below. The
contact exponent x = d + 0 is the basic new scaling
index of the strong-coupling regime; we obtain x = 1.28
in d = 1. (Contact exponents in thermal systems have
been discussed in [11].) The polymer roughness exponent

and free energy exponent tu are found to retain
their Gaussian values g = 1/2 and cu = 0 also in the
strong-coupling regime; see below. These are related to
the roughness exponent ~ = tu/g = 0 and the dynamic
exponent z = I/g = 2 of the growing interface [12].

(3) The approach to criticality as p ~ p, is also
governed by the contact exponent (a) For p ) p„the
bound state free energy excess (per unit longitudinal
length), corresponding to the excess growth rate, and
the localization length have the power law singulari-
ties c1,h(p) —c1,h(p, ) —(p —p, )'" and g(p) —(p
p, ) ",respectively, which are determined by the scaling
relation [11] gv~~

= vz = g/(I —gx). For large disor-
der, the bound state density also develops a minimum

(C&)(p, A ) —s 's and, as $/s ~ 0, tends to a limit

pb(r) —~r~ which is zero at the defect; see Fig. 1(b).
This may seem paradoxical, since it is the defect that
localizes the polymer, but can be understood by noting
that p, ( 0: Slightly above the transition, the defect line
has a few attractive regions but is mostly repulsive. The
bound polymer takes advantage of the attractive regions
but avoids the rest of the defect. (b) In the deconfined
phase [Fig. 1(c)], the scale $ governs the crossover to the
scaling close to an infinitely repulsive defect p*(r) —r

Some of these results can be obtained by a renormal-
ization group analysis of Eq. (1) (details of which will be
published elsewhere). It is convenient to use the dynamic
action [13]

0

FIG. 1. Phase diagram, parametrized by the effective interac-
tion parameters Ao and p. The phase of enhanced growth with
the bound phase (shaded) terminates on the critical line (thick
line) in the weak-coupling regime (dashed) or in the strong-
coupling regime (solid). The threshold value (Ao)2 is zero for
d ~ l. Limit density profiles for g ~ 0 [shown only on one
side of the defect (thick margin)]: (a) critical line (p,*), (b)
bound state ( p1, ), (c) deconfined state ( p„*).

d" r dto 6"(r)ht1 + iho~ ~~, ho
I

——V' hp — (Vhp) —pp6 (r)
2 2

(6)

The canonical variables to = vt and ht1 = (v/o. )'~ h
have dimensions zp = 2 and gp

= d —1. The conjugate
field ho generates response functions.

The Gaussian theory (Ao = pt1 = 0) has the response
propagator [Fig. 2(a)]

Gp(r2 r1, to2 rpi) —= ihp(rt t rot)hti(r2, rp2)

[4'7r(t02 r01)] 0(t02 r01)

x exp[(r2 —r1) /(t(12 —tot)]

(7)
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tion [14]:

(a)

FIG. 2. (a) Response propagator and (b) correlation function
of the Gaussian theory. The dashed line marks the defect.
(c) The vertex ih(Vh) (d) —(f) Leading singularities in the
diagrammatic series.

The coupling constant Ao has dimension e =— 1 —d. We
define the dimensionless coupling uo = ADL', the scale
L will also serve to generate the renormalization group
flow. In the perturbation series generated by the vertex
ihp(Vhp) [Fig. 2(c)], we find for small e ) 0 low-order
singularities

clf(rl e)
ihp(rl, tpl)hp(r2, tp2) = 1 + up l)

&& Go(r2 —rl, to2 —tol)

+ O(u,', uo'2),

2Ci + C2 2
ho(r&, rol)ho(rr, tm I= (1 + '~o

X Co(rl r2 t02 tol )

+ O(u(l, uoe ),

(9)

(10)

hQ(1, t(l) Apc3 dtoGp(r, t(l
—to) + O(u('l, u(la ),

c~ = 2 " '~ " and c2 = 2 '~ are the res&dues

of the poles of Figs. 2(d) and 2(e). The function f(r, e)
with f(r, e) = 1 for clog(L/lrl) » 1 and f(r, e) =
slog(L/lrl) for slog(L/lr l) « 1 constraints the singular-
ity in (9) to the defect line. c3 —a " is the divergent part
of the diagram in Fig. 2(f) in terms of some short-distance
cutoff a. All external points in (9), (10), and (11) live
on the scale L, i.e. , lrl, l

—L and tpk —L" The singu-.
larities in (9) and (10) can be absorbed into the renor-
malized fields h~ = Zho and hg = Z Zho with Z =
1 —(cl + c2/2)up/e + O(up) and the defect renormal-
ization Z = 1 —cl fup/e + O(up). Since there is no ad-
ditional renormalization of the vertex ihp(Vhp), these Z
factors also determine the coupling constant renormaliza-

and the correlation function [Fig. 2(b)]

Cp(r2, rl, tp2 —tpl) = hp(rl, tpl )h(r2, tp2)

dtp Gp(rl, tol —tp)Gp(r2, tp2 tp) .

(8)

+ Z(r —1, t)]), (13)

in a system of transversal size L with periodic boundary
conditions and v = 1. The random variables g(t) are
uncorrelated and take the values p ~ o with equal
probability 1/2. We hence obtain p(r) and the stationary
end point density -p&(r) =—lim, ,-( p(r, tt), namely,

p(r) = Z, (r, t)Z, (r, t)/ f Z, (r, t)Z2(r, t) dr (where Zl
and Z2 result from two independent realizations of
the randomness) and pt (r) = Z(r, t)/ f Z(r, t) dr for
t —t; » L2. In analogy to (5), pt determines an
independent exponent x~ = d + Oy, the dimension of
the boundary field 4 (tf).

On the strong-coupling critical line, the mean-
square displacement from the defect, 5 (t2 —t l ) —=

((Il (tl) r (t2)), and the equal-time correlation function
of the local free energy, C(r) —= [h(r, t) —h(0, t)]2,
have for L ~ ~ the crossover scaling form b, (t; Ao) =
ltl '27(ltl 's ') and C(r; Ao) = Ioglr/rolC(lrlg '),
respectively. This crossover is shown in Fig. 3; our
results indicate that the scaling functions 23 and C
have a finite large-distance limit, i.e. , g =

gp
= 1/2 and

~ = y = 0 also in the strong-coupling regime.
The crossover scaling of the contact operator

is obtained in the four independent ways shown in

Fig. 4. (a) The contact probability is of the form

uR ihR(rl, to()ihR(r2, to2)hR(r3 tQ3) = Z . (12)
up ihp(rl, tpl )ihp(r2, tp2)hp(r3, tp3)

The resulting one-loop beta function p(uR) =
L()tuR = euR + (2cl + c2)uR + O(uR) has real-3 5

valued fixed points uR = —e/(2cl + c2) for d & 1,
which govern the transition to the strong-coupling
regime (cf. Ref. [8]). This transition has the following
properties: (i) The canonical time tp remains unrenor-
malized, i.e., z* = zp = 2 (and hence g" = gp = 1/2).
(ii) The height field hR acquires the scale-dependent
dimension —~(uR) = —gp + p (8/8 uR) logZ with the
fixed point value —y* = 0 (and hence ~' = cup = 0).
(iii) The defect field hR(0, tp), which is related to
the polymer field 4(tp), acquires the dimension
x(uR) = 1 + P(B/()uR)log[Z 'Z(r = 0)] with the
fixed point value x* = d + 2e/3. (iv) The power singu-
larity (11) signals a shift in p, . We expect the qualitative
properties to be preserved in the strong-coupling phase.
However, we find numerically that the contact exponent
takes a new value x, which cannot be predicted in
perturbation theory.

Our numerical results for the polymer system in d = 1

are based on iteration of the lattice transfer matrix derived
from (3),

Z(r, t + 1) = exp[ad(t)6„0]
X tlz(r, t) + exp( —I/v) [Z(r + 1, t)
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FIG. 3. (a) Mean-square displacement from the defect A(t)—
t (compared to the weak-coupling case rr = 0, dashed line) and
(b) free energy difference correlation function C(r) —log l r/ro l

on the critical line (o. = 1.832, p, = —1.163) [compared to
rr = 0, where C(r) —= 0].

(4) (L, /Io) —L '+(Lg ') with the large-scale asymp-
totics given by (5). (b) The two-point function is
expected to factorize, (4(t&)4(tz)) = R(tz —tt)(4),
for lt2 —ti l~ && L, with the L-independent return
probability R(t; Ao) = ltl ~R(Itl~g ') —Itl ~ as
Irl&$ ' ~ ~. Off criticality, (c) the localization length

defined, e.g. , by g = j r p(r) dr, has the form

s(I . ~o) = I 'X(I 6) —(I —/. ) ~"' "
the contact probability is (4) (p, Ao) = p+z(ps)—
(p —p, )l'I(' l'), as p ~ p, [15]. All four measure-
ments are consistent with the effective contact exponent
x = 1.28 ~ 0.08, on the largest numerically accessible
scales, but it is difficult to decide whether this is already
the asymptotic value. Measurements with analog scaling
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FIG. 4. Determination of the contact exponent x at strong
coupling (o. = 1.832). At criticality (p, = —1.163): (a) con-
tact probability (4') (L); (b) return probability R(t) in a system
of size L = 1000. Bound phase (p ) p, ): (c) localization
length se(p —p„)and (d) contact probability (4) (p —P, );
the system size is always L ) 4g. All quantities have a con-
sistent power law behavior (solid lines) on large scales that
is clearly distinguished from the weak coupling case a. = 0
(dashed lines).

forms yield x~ = 1.16 ~ 0.06 for the end-point expo-
nent. The numerical data for the semi-infinite system
with a wall at r = 0 are very similar to Figs. 3 and 4, and
lead to the same effective exponent. We hence believe
the two systems to be in the same universality class.

In summary, we have shown that a model of non-
linear surface growth in one dimension [or directed
polymers interacting with a quenched random de-
fect in (1 + 1) dimensions] has a nonperturbative,
asymptotically free strong-coupling phase. Hence it
is closely related to ordinary KPZ growth in two di-
mensions [or directed polymers with quenched bulk
disorder in (1 + 2) dimensions]. However, this model
can be reformulated as a driven lattice gas problem
that is likely to be exactly solvable. If the results of
this Letter can indeed be established at the level of
an exact solution, they are an ideal test for approxi-
mate renormalization schemes. Hopefully, they will thus
improve our analytic understanding of strong-coupling
behavior for systems out of equilibrium.
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