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Single Jump Mechanisms for Large Cluster Diffusion on Metal Surfaces
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The random motion of large, two-dimensional adatom clusters and vacancy clusters over a metal
surface is described by a diffusion coefficient D ~ d ", where d is the diameter of the cluster and the
integer n identifies the diffusion mechanism. For circular clusters, n = 3 when center-of-mass motion
occurs by adatom diffusion along the periphery of the cluster, while n = 2 or 1 when cluster diffusion
occurs by correlated or uncorrelated adatom evaporation and condensation, respectively. A faceted
adatom cluster diffuses by evaporation and condensation of facet ledges, giving n = 0 when cluster
diffusion is determined by the rate at which erosion of a ledge is initiated.

PACS numbers: 68.35.Fx, 05.40.+j, 61.46.+w

The dynamics of atom clusters adsorbed on surfaces
influence such technologically and scientifically impor-
tant processes as crystal and thin film growth by atom
deposition, surface roughening, catalysis, and mass trans-
port diffusion. Current research primarily addresses clus-
ter nucleation and growth [1] and small cluster (N ( 20
atoms) diffusion [2], which may occur by single atom
jumps, concerted jumps (on close-packed surfaces), and
gliding (when the cluster is not in registry with the surface
lattice). The larger, two-dimensional clusters into which
these grow are generally regarded simply as immobile
precursors to three-dimensional island growth. However,
Hamilton, Daw, and Foiles [3] have recently proposed
a dislocation mechanism for diffusion of moderate-sized
monolayer clusters (N ( 50) on fcc (111) surfaces that
may additionally facilitate rapid diffusion of larger, het-
eroepitaxial islands with misfit dislocations in their low-
est energy configurations. A somewhat similar diffusion
mechanism, in which friction at the cluster-substrate inter-
face limits the cluster mobility, is presented by Kukushkin
and Osipov [4]. Advances in direct imaging techniques
[scanning tunneling microscopy (STM), scanning trans-
mission electron microscopy, and field ion microscopy]
have also increased interest in cluster dynamics.

Wen et al. [5] have recently reported STM observations
of large (100 ~ N ~ 800), two-dimensional silver clus-
ters diffusing over a Ag(100) surface. By monitoring the
trajectories of various clusters, they showed that the clus-
ter motion was indeed Brownian (random) with diffusion
coefficient that varied little with cluster size. Of impor-
tance to the present investigation are their observations
that the clusters had "an approximately square shape, al-
though irregularities such as rounded corners and crooked
edges are common, " and that these large clusters showed
little change in size over a period of several hours while
smaller clusters disappeared. Wen et al. point to the latter
phenomenon as evidence for Ostwald ripening, whereby
larger clusters grow at the expense of smaller ones, so that
the monitored clusters must be in "dynamic quasiequilib-
rium" with the population of Ag adatoms on the surface.

Ap = NAc
wR

C (3)

where R is the radius of the cluster and 0, is the surface
area occupied by an atom in the cluster. The cluster jump
frequency I, is equal to the rate at which a cluster atom
makes a jump along the periphery, so that

I, = I c'"2~R, (4)

where c q is the equilibrium concentration of adatoms
at the periphery, per unit length of cluster periphery.

In a similar STM experiment, Morgenstern et al. [6]
observed the random diffusion of large (100 ~ N ~
5000), monatomic-deep vacancy clusters over a Ag(111)
surface. These clusters appear faceted as well, while
their motion is unambiguously described by the diffusion
coefficient D (x d, where d is the diameter of the
cluster.

In both cases, the researchers ascribe the cluster motion
to adatom evaporation and condensation at the periphery
of the cluster (atoms are exchanged between the cluster
and the surrounding "gas" of adatoms on the surface).
This and other possible large cluster diffusion mecha-
nisms based on single atom jumps (rather than collective
motion) are considered in this Letter.

The most straightforward mechanism to evaluate is that
of cluster diffusion by adatom diffusion along the cluster
periphery. The diffusion coefficient for the cluster is

D, = —,W', I, , (1)

while that for an adatom bound to the cluster periphery is
similarly

1

Dp = 2A I

where A and I' are the jump distance and jump frequency,
respectively, of the cluster or adatom. Movement of the
cluster center of mass a distance A, requires that all N
cluster atoms be transported the same distance; this latter
action is equivalent to transporting a single cluster atom a
distance
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Combining Eqs. (1)—(4) produces the cluster diffusion
coefficient

eq
Dpcp

3 (5)
eq

where D~ and cp can be estimated from molecular
dynamics simulations or total energy calculations if not
from experiment.

Cluster diffusion by adatom evaporation and condensa-
tion requires that the cluster and adatom populations be in
equilibrium. The diffusion coefficient will have a differ-
ent cluster size dependence according to whether or not
a spatial correlation exists between the evaporation and
condensation events. In either case, the fIux of adatoms
attaching to the cluster (assuming no appreciable barrier
to attachment) is

D, =

(6)
ap

where D is the surface diffusion coefficient for adatoms,
c',q is the equilibrium concentration of adatoms on the
terrace, and ao is the surface lattice parameter (nearest
neighbor distance). The cluster jump frequency is then

2mR1, = j 2mR = D, c',q. (7)
Op

For the case of no correlation, a cluster diffuses by
evaporation of a cluster atom and simultaneous attach-
ment of an adatom elsewhere at the cluster periphery
(since the cluster exists in equilibrium with the adatom
population). By an argument equivalent to that preceding
Eq. (3), the linear distance A, between such evaporation
and condensation events is related to A, by

mR
A, (8)

and has a value given by the average distance between
any two points on the cluster periphery (this is made more
precise later). However, this approach ignores the fact
that an emitted atom is likely to be quickly "recaptured"
near its initial position at the cluster periphery. Indeed,
in a closed system at equilibrium, all emitted atoms
will eventually be readsorbed by the cluster. Thus a
spatial correlation exists between atom evaporation and
condensation that must be rejected in the value of A, .

To account for this correlation, consider a source
of (fictional) adatoms at the point (r, 0) = (R„,O) just
adjacent to the circular cluster, where the origin of the
cylindrical coordinate system is at the cluster center, and
R, = R + ao (see Fig. 1). This source can be written as
a two-dimensional delta function of "strength" unity [7],

1o. = 6(r —R, g) = 6(r —R, ) P e™.(9)27' r

Then the equilibrium population c(r, 0) of adatoms on the
surface originating from this source is simply the solution
to the Laplace equation in cylindrical coordinates, with
appropriate boundary conditions.

The surface external to the cluster is divided into
regions I (r ~ R,) and II (r ) R, ), as indicated in Fig. 1.
The boundary conditions are that all adatoms incident
on the cluster are absorbed there (ct = 0 at r = R); all
adatoms at infinity are refiected (Vc . n = 0 at r = ~,
where n is the unit vector in the radial direction); the
adatom concentration is continuous across the boundary
r = R, (ct = crt); and the adatom fiux is discontinuous
across the boundary r = R„due to the presence of the
"line source" f o. dr there [D,V(c& —c„) n = f o- dr
at r = R,]. Laplace's equation is solved by expanding
c& and c&& in cylindrical harmonics and imposing the
boundary conditions to obtain the expansion coefficients.
The solution near to the cluster is found to be

1 r lct(r, 0) = ln—
2~D, R)

1 r2m R2m
+ cosmic .

2nD ) mr R
The fiux of (fictional) adatoms precipitating at the

circular cluster is

(10)

j(0) = D. act(r, 0)
(11)

r=R
But j(0) is also the probability that an adatom initially
at the source point (R„O) will diffuse over the surface
(external to the cluster) to the point (R, 0) at the cluster
periphery. From Fig. 1, the distance A between those two
points obeys the relation

A = 2R (1 —cos0) . (12)
Then the average value

2'
g2a A j(0)6(r —R)r d0dr

R l= 2R 1 — = 2apR.
R ) (13)

FIG. 1. Circular cluster of radius R, with source of "fictional"
adatoms just outside the cluster at the point (r, 0) = (R„O).
The circle of radius R, separates regions I and II. An adatom
emitted at the source point (R„O) and subsequently readsorbed
at (R, 0) has traveled a linear distance A.
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(15)

(17)

for a faceted cluster.
This last equation is easily evaluated for the large,

faceted Ag clusters adsorbed on a Ag(100) surface
observed by Wen et al. [5]. Substituting nf = 4,
ao = 4.09/~2 A, v = 10' s ', E = 0.82 eV [8],
and T = 300 K produces the diffusion coefficient D, =
1.4 X 10 ' cm s ', which falls well within the narrow
range (0.53 —2.7) X 10 ' cm s ' found experimentally.

Diffusion of the large vacancy clusters over a Ag(111)
surface observed by Morgenstern et al. [6] evidently
occurs by correlated adatom or vacancy evaporation and
condensation [9], since the size dependence of the mea-
sured diffusion coefficient agrees with that in Eq. (14).
[Equation (14) is unchanged when the source o. is placed

Combining Eq. (8), with A, replaced by A2„and
Eqs. (1) and (7) produces the diffusion coefficient

D. = (14)R2
describing the random diffusion of a circular cluster by
correlated adatom evaporation and condensation.

For the (less likely) case of cluster diffusion by
uncorrelated adatom evaporation and condensation, the
(fictional) adatom fiux j(0) = 1/(27rR), so that the result
of Eq. (13) is Az = 2R, Combining Eqs. (1), (7), and

(8) then produces the cluster diffusion coefficient
n' D.c."

D, =
mao R

By contrast, faceted clusters diffuse as facet ledges are
completed or eroded. (A completed ledge is the row of
atoms making up one facet, or edge, of the cluster; a partial
ledge is terminated by one or two kinks. ) To maintain
the cluster size, the cluster and adatom populations must
again be in equilibrium and, additionally, the rate of
ledge nucleation on a facet and the rate of facet erosion
must be substantially equal. However, the rate of ledge
nucleation equals the cluster perimeter length multiplied by
the nucleation rate per facet length, and so is proportional
to the cluster size d, while the rate of facet erosion, which
is limited by the rate at which cluster "corner" atoms
(where two facets meet) erode, is largely independent of
cluster size. Thus faceted clusters are stable only above a
minimum size, and their motion is described by a diffusion
coefficient that is essentially independent of cluster size.

An expression for D, can be obtained by assuming that
a facet ledge inevitably erodes whenever a corner atom
leaves the cluster. The cluster jump frequency is then

(I', = nfv expl— (16)
kgT j'

where nf is the number of facets and v and E are the
vibrational frequency and migration energy of the cluster
corner atom, respectively. The cluster jump distance
A, = ao, so that the diffusion coefficient

2
nf ao

D, = v exp
4 kpT)

inside the cluster and the distribution of "fictional" adatoms
within the vacancy cluster is calculated. ] To estimate
D, due to adatom diffusion within the vacancy cluster,
the equilibrium adatom concentration c', 'I is replaced by
(1/B) exp( G,—/ktiT), where G, = 0.709 eV is the
Gibbs free energy for adatom formation on Ag(111) [10].
With the additional substitutions 0 = 7.243 A, D
(4.1 X 10 cm s ') exp[( —0.044 eV)/ktiT] [11] and
T = 300 K, the diffusion coefficient D, = (2. 1 X
10 s cm s ')/R, with the cluster radius R specified in
cm. Similarly, to estimate D, due to vacancy diffusion
through the surface atomic layer surrounding the cluster,
the equilibrium vacancy concentration c I is replaced by
(1/0) exp( G /k—IiT), where G = 0.549 eV is the Gibbs
free energy for vacancy formation at the Ag(111) surface
[10]. The surface vacancy diffusion coefficient D
(1.3 X 10 3 cm2s ') exp[( —0.314 eV)/kgT]] [12], so
that Eq. (14), with D, c'q replaced by D c'~, produces
D, =(95X10 cm s ')/R

These cluster diffusion coefficients are much
smaller than the experimental value D, =(1.3 X.
10 cm s ')/R [6]. To reconcile this latter value
with the cluster diffusion mechanism of adatom evapo-
ration and condensation requires that a supersaturation
of adatoms be contained within the cluster, or that the
adatom formation energy be approximately 0.5 eV (note
that this value is the difference in binding energies of
an adatom on the terrace and an adatom at the base of a
step). The sum of the formation and migration energies
can be found experimentally by measuring the vacancy
cluster diffusivity at several temperatures.

In summary, diffusion coefficients have been derived
for large, two-dimensional adatom clusters and vacancy
clusters that refIect the mechanism by which diffusion oc-
curs. These expressions are applied, with some success,
to recent experimental results for adatom cluster diffu-
sion on Ag(100) and vacancy cluster diffusion on Ag(111)
surfaces. It should be noted, finally, that diffusion by
facet growth and erosion may be prevented by impurity
adsorption at the cluster; for example, Van Siclen [13]
recently showed, by embedded-atom-method-type calcu-
lations, that In adatoms segregate to corner sites in Cu
clusters on Cu surfaces.
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