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Spectral Statistics of Acoustic Resonances in Aluminum Blocks
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We measure several hundred acoustic resonances in aluminum blocks. The statistical properties of
these spectra are analyzed and compared to predictions from random matrix theory. A Poisson behavior
is found for a rectangular block. The transition from Poisson to Gaussian orthogonal ensemble statistics
is studied by measuring aluminum blocks manufactured in the shape of three-dimensional Sinai billiards.

PACS numbers: 62.30.+d, 03.40.Kf, 03.65.Sq, 05.45.+b

Studying the transition from regularity to chaos is a
topic of great interest in classical and quantum systems.
However, little experimental work has been done in
quantum systems. One of the best studied systems
is the hydrogen atom in a strong magnetic field [1].
For this reason, it is useful to have an experimental
"toy system" with an easily tunable transition parameter
that controls the degree of chaos. In recent years,
experiments with microwaves in metal cavities have been
used to study chaos in billiard systems [2—5]. The
electromagnetic vector Helmholtz equation is, in the case
of sufficiently flat cavities, mathematically identical to
the two-dimensional Schrodinger equation. Hence these
experiments simulate two-dimensional quantum billiards.
Since the level statistics of quantum spectra is well
described by random matrix theory [6], the same is true
for the statistics of these microwave resonances. It is
interesting to investigate whether the spectral statistics of
waves propagated by equations other than the Schrodinger
equation also follow random matrix theory.

One example that allows spectra to be measured with
high resolution is elastic waves in solids. The elastome-
chanical wave equation in three dimensions is tensorial
and has complications not found for the Schrodinger equa-
tion. It is therefore important to show that the assump-
tions of random matrix theory carry over to a system like
this. This question was addressed by Weaver [7] in a pa-
per in 1989. He excited aluminum blocks acoustically by
dropping steel balls on them. The spectral fluctuations he
measured are very close to the predictions of the Gaussian
orthogonal ensemble (GOE), which models a time rever-
sal invariant system exhibiting level repulsion. Bohigas
et al. [8] have shown that these results are consistent with
the general assumptions of random matrix theory, pro-
vided that finite wavelength effects are taken into account.
Recently, a new analysis of the data was performed from
the viewpoint of periodic orbit theory [9].

In this Letter, we use Weaver's technique to study
further the spectral statistics of acoustic resonances in
aluminum blocks, and present three main results. First,
we demonstrate that it is possible to obtain the Poisson
type of behavior. It is not obvious, and was not shown
in Weaver's work, that the regular system in acoustics

yields Poisson statistics. Second, we show the transition
from Poisson to GOE fluctuation properties by measuring
blocks in the form of three-dimensional Sinai billiards.
The transition parameter is easily controlled by the geo-
metric deformation. Third, we present the first experi-
mental example for this transition in a three-dimensional
system.

In the case of isotropic materials, the elastomechanical
equation of motion can be split into two wave equations
for the longitudinal and the transverse parts of the displace-
ment vector. These two modes are coupled through the re-
flections at the boundary between the medium and the air.
In general, a purely longitudinal or transverse wave be-
comes, after the reflection, a mixture of both modes. This
phenomenon is called mode conversion. Define c~ and
cq as the velocities before and after the reflection, respec-
tively, and Bz and 6z as the corresponding angles relative
to the normal. Here X and Y stand for either longitudi-
nal (L) or transversal (T). Snell's law [10] then reads
sin6x/sin6r = cx/cr, which implies that the angle of
reflection is generally not equal to the angle of incidence.
Hence, acoustic resonances differ from the eigenstates of
the scalar Schrodinger equation, and our experiments have
no direct relationship to quantum mechanics, unlike the
microwave experiments in two dimensions. Experiments
under way with three-dimensional cavities [11] should
conceptually have more in common with our work. Ran-
dom matrix theory, however, rests on purely statistical as-
sumptions formulated in energy space, or, in our context,
frequency space. Besides linearity, there are no further re-
strictions on the form of the underlying wave equation.

Another significant difference from quantum mechanics
and the microwave experiments becomes apparent when
one tries to apply a ray picture analogous to semiclassics.
In the acoustic experiments discussed here, there is,
corresponding to the highest frequency measured, always
a minimal wavelength that is not negligible compared to
the size of the blocks. Thus the zero wavelength limit,
essential for a discussion in the spirit of semiclassics, is
not fulfilled; this has far reaching consequences for the
interpretation of the spectral lluctuation properties [8].

The aluminum blocks in our experiments were manu-
factured from the alloy A1MgSi from NKT Metalgarden;
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the sizes were about 10 cm (see below). The blocks
were supported by a foam pad. For the measurements
we used piezoelectric transducers made of Ferroperm
Pz34 (modified lead titanate ceramic), with dimensions
8 X 3 X 1.195 mm . The lowest resonances of the trans-
ducers were about 1.8 MHz. For the coupling to the
blocks, microcrystalline wax was used. This and the foam
support appeared to have only a minimal effect on the res-
olution of the resonances. The signal was amplified and
filtered using a Stanford Research Low Noise preampli-
fier RS560. It had very little distortion, of the order of
0.01%, so as to prevent the generation of spurious har-
monics. Upon dropping a steel ball on the block, the am-
plified, transient time signal was measured with a Hewlett
Packard 3562A spectrum analyzer; the measurement was
triggered by the signal and the length of the time series
captured by the analyzer was approximately 100 ms. A
fast Fourier transform then gave the frequency spectrum.
Our measurements were restricted by the frequency range
of the spectrum analyzer, 0 to 100 kHz. To obtain one
spectrum for the study of the level statistics, we averaged
over ten measurements with the same impact position of
the steel balls, and then repeated this procedure for ten
different impact positions. This was done to minimize the
effect of accidentally hitting a node of a resonance. For
the same reason, the positions of the transducers were also
varied. The exponential decay of the time signal yields a
Lorentzian line shape in frequency space, allowing an es-
timate of the resolution Q = f/5 f, where f is the posi-
tion and Af the width of a given resonance. By scanning
small frequency intervals (using a "flat-top" windowing
function), we determined the Q values of several peaks.
These all lie between 5000 and 10000.

The measurements were performed on a block machined
into three successive shapes. In the first experiment, we
used a block of rectangular shape, with dimensions 60.6 X
98.0 X 158.6 mm . For the ratios of the side lengths we
chose the golden mean, i.e., approximately 0.618, in order
to prevent accidental degeneracies in the spectra. In the
second and the third experiments, octants of spheres of
radii 10 and 20 mm, respectively, were removed from one
corner. The block thereby acquired the shape of a three-
dimensional Sinai billiard. A section of a typical spectrum
is shown as the inset in Fig. 1. The most difficult part,
as in all experiments of this type, was the identification
of the resonances. This was done by comparing the ten
spectra for different impact positions of the steel balls. In
a spectrum with many near lying levels, there is always
a certain fraction of levels which are not seen due to the
finite width of the resonances. The only remedy for this
"missing level effect" is an improvement of the quality
factor Q. The ratio of Af to the mean level spacing
at 100 kHz, i.e., in the worst case, is about 1:5. In the
three experiments, 391,436, and 439 levels were identified,
respectively, yielding three sequences of frequencies to
be used for the statistical analysis. In each case, the
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FIG. 1. Cumulative eigenfrequency densities: the solid line
corresponds to the rectangular block; the dotted line corre-
sponds to the Sinai billiard with 20 mm octant radius. The
dashed line is the curve given by formula (1). The inset dis-
plays on a linear-logarithmic plot the section between 70 and
75 kHz from a spectrum of the first experiment, showing no
level repulsion. Since a "Hanning" windowing was used, the
widths of the peaks are artificially broadened.

cumulative eigenfrequency density N( f) was computed,
which is the number of frequencies in the sequence less
than or equal to f AWeyl t.ype of formula

N„(f) = 4~U( 2 + s f
cr cI. )

7rS 2 —3(cl./cT) + 3(cI /cT)
4 cH(ci/cT)' —I j

was proposed [7,12], where U and S are the volume and
the surface area of the block. Since this formula assumes
periodic boundary conditions in two (out of the three)
spatial directions, it cannot be directly applied to our
blocks. Nevertheless, it does seem to describe the trend
of our data as can be seen in Fig. 1; our values for cq
and cT were calculated from the values of the mechanical
properties of aluminum that were used in Ref. [13].

In order to obtain the smooth part of N( f), a third order
polynomial with four free coefficients was fitted to each
experimental cumulative eigenfrequency density. Each
sequence was then mapped onto a new one by introducing
a dimensionless frequency scale x = N„(f) with unit
level density everywhere. Finally, the nearest neighbor
spacing distribution P(s) and the spectral rigidity As(L)
were extracted from those sequences using the procedure
described in Ref. [14].

In Fig. 2(a) the nearest neighbor spacing distribution
is plotted for the first experiment. The data are divided
into a lower and a higher frequency sector, i.e., into
the first 196 and the remaining 195 levels, respectively.
The low frequency sector is clearly rather close to
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spectra. Because of mode conversion, which is a strong
effect [16],we cannot exclude the possibility that each ir-
reducible spectrum exhibits non-Poisson statistics. How-
ever, the superposition of several independent spectra has
near-Poisson statistics, even in the extreme case where
each irreducible spectrum has GOE statistics [6]. In the
present context we were interested in any system that effi-
ciently produces spectra with Poisson statistics, as a start-

ing point for measuring the transition to a system with
GOE fluctuation properties.

The spacing distribution and the spectral rigidity for
the Sinai billiard with a 10 mm radius octant are shown
in Figs. 3(a) and 3(b), respectively. Again, the data are
divided into a low and a high frequency sector. The
results are somewhere between the Poisson and the GOE
prediction. In the case of the spacing distribution, we
used the Wigner surmise as theoretical prediction, which
is known [6] to be very close to the GOE result. We
may conclude that the removal of the octant from the
block induced level repulsion, characteristic of chaotic
spectra. In a zero wavelength limit, i.e., in a ray picture,
the spectral fluctuation properties are a consequence
of defocusing induced by the octants. However, as
mentioned above, the wavelength in our spectra has a
lower limit, which is about 4 cm in the low frequency
sector and about 3 cm in the high frequency sector.

FIG. 2. (a) The nearest neighbor spacing distribution for the
rectangular block. The solid histogram is for the lowest
196 resonances; the dashed histogram is for the highest 195.
The smooth curve is the Poisson distribution. (b) The spectral
rigidity for the rectangular block. The solid dots are for the
lowest half resonances; the open dots are for the highest half.
The solid curve is the Poisson case; the dashed curve is the
GOE case.
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a Poisson distribution, whereas the higher frequency
deviates from the Poissonian, but only at small spacings.
This is precisely the missing level effect. Since the
level density increases quadratically with frequency, it
becomes more and more difficult to resolve and identify
the higher frequencies. The same effect can be seen in
Fig. 2(b) where the spectral rigidity is plotted. Again, the
high frequency sector is further away from the Poisson
prediction. Assuming that the Poissonian is the true
distribution, an estimate yields that we miss 40 or so
levels. Such a considerable number of missing levels
mimics level repulsion. However, the fact that we see
Poisson statistics in the low sector is a strong indication
that there are no further mechanisms besides the missing
level effect causing deviations from the Poisson statistics.
The quality of these results is comparable to room
temperature microwave measurements performed by the
Boston group [3,15], but inferior to the Darmstadt group
[4] measurements on superconducting cavities.

Since our block still has mirror symmetries, the spec-
trum is a noninteracting superposition of eight irreducible
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FIG. 3. As for Fig. 2 but for the small octant removed from
the block. The dotted curve in (a) is the Wigner surmise.
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FIG. 4. As for Fig. 2 but for the large octant removed from
the block. The solid curve in (a) is the Wigner surmise.

Structures much smaller than these lengths cannot be
resolved by the acoustic waves. This explains why the
level statistics of the high frequency sector are closer
to the GOE prediction. As expected, the GOE features
become considerably stronger in the results for the third
experiment, plotted in Figs. 4(a) and 4(b), where the
radius of the octant was 20 mm. Upon the assumption
that the Wigner surmise is the true distribution, the
number of missing levels in this experiment can be
estimated as 2 or 3, which is 10 times lower than in the
first experiment.

In conclusion, we have shown that it is possible to
obtain Poisson statistics in acoustic experiments, and have
studied the transition to GOE statistics. This is, to our
knowledge, the first time that this transition has been
measured in a three-dimensional geometry.

We thank J. Bondorf for suggesting this line of work
to us. We are grateful to R. L. Weaver for helpful
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