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Oscillating Interatomic Potentials and Growth of Icosahedral Quasicrystals
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The crucial role of frustration in atomic ordering for quasicrystal formation is demonstrated within
a simple pmodel for three-dimensional growth of icosahedral quasicrystals in binary alloys (up to 2 X
106 atoms). Two features of the model are important: (1) The ratio of atomic sizes is the one typical
for the CsC1 structure and (2) the interatomic potential is an oscillating function of interatomic distances
(those oscillations cause frustration in atomic ordering). It is shown that different potentials result in
different faceting of the grown clusters. Phasonic jumps and the phasonic relaxation in the clusters are
discussed.

PACS numbers: 61.44.+p, 05.50.+q, 61.50.Ks

The nature of quasicrystals is still a source of con-
troversy even ten years after their discovery [1]. High-
dimensional descriptions have been developed to specify
the positions of atoms in quasicrystals [2—4], but the ori-
gin of their complicated atomic structures is unclear. It is
especially difficult to imagine the growth of quasicrystals
because, rigorously speaking, every atomic position has a
unique environment and the growth process is nonlocal
[5]. However, physical growth algorithms may be prac-
tically local at least when artificial units, like the Penrose
tiles, are used [6]. More realistic two-dimensional atomic
models of quasicrystal growth include atoms of two differ-
ent sizes [7], but the ratio of those sizes [2cos(7r/10) =
1.9] is too large for real alloys. Three-dimensional growth
models are usually constructed from special atomic clus-
ters (the Ammann rhombohedra, different units with icosa-
hedral symmetry, etc.) which are assembled according to
some matching rules. A typical example is the icosahedral
glass model which assumes that large icosahedral clusters,
found in crystalline approximants, can be linked together
in a way which preserves the quasiperiodic translational
order (see useful surveys by Stephens and Elser [8,9] and
further development by Robertson and Moss [10]).

In this Letter we consider a three-dimensional model
of the quasicrystal growth which exploits some general
principles of atomic ordering (prompted by the structure
of simple crystalline approximants) rather than ready-
made clusters. Atoms are supposed to be spherical; only
the atomic sizes and interactions are specifically chosen.
The model includes two crucial features: (A) a special
short-range ordering, the dodecahedra/ local o&dering
(DLO), probably generated by close packing of atoms with
two different sizes; and (B) the oscillatory interatomic
potentials which cause frustration between the short-range
and medium-range orderings. In the remaining part of this
paper, we discuss these two features and then present the
properties of the quasicrystalline cluster grown within our
model.

The dodecahedral local ordering of atoms is rather un-
conventional and merits comment (see also [11]). By def-
inition, the DLO is such an ordering when all the closest

neighbors of each atom are positioned at vertices of a reg-
ular pentagon dodecahedron. Hence the DLO is similar
to the canonical-cell ordering (or b corde-ring) of icosa-
hedral clusters developed by Henley [12], but his b link-

age and c linkage are 7. times longer than the two short-
est interatomic distances, rz and r3, of DLO [r = (1 +
~5)/2 =1.618]. The center-to-vertex distance of the do-
decahedron, r3, corresponds to the shortest interatomic
bonds directed along threefold axes (in the Al-transition-
metal alloys r3 = 2.5 A and in the Al-Li-Cu alloys r3 =
2.7 A). The length of the bonds directed along twofold
axes rz is only 15% more, rz = 2r3/~3; r2 is the dis-
tance between next-neighboring vertices of the dodecahe-
dron. These two typical distances are simply related with
the quasilattice constant a~, a~ = r2gr + 3/4. The dis-
tance between neighboring vertices of the dodecahedron
is rz/r; it is significantly shorter than normal interatomic
distances and only a couple of the twenty vertices are si-
multaneously occupied (~8). The bcc and CsC1 crystals
are trivial examples of the DLO (Fig. 1); in other crystals
(FeSi, Hg, u-AI-Mn-Si, R-AlsLi&Cu, etc.), which are
the approximants of icosahedral quasicrystals, the DLO
is a result of special atomic positions and/or special
unit-cell parameters. Within the six-dimensional pro-
jection scheme, a high-density DLO quasicrystal arises
if its acceptance domain has the form of the ruffled
truncated triacontahedron [13—15], and the DLO mo-
tives were really found in the icosahedral quasicrystals
of different composition (Al-Mn-Si [2], Al-Fe-Cu [3],
Al-Pd-Mn [4]).

This unusual ordering may be caused by the close
packing of atoms with two different sizes, large (L) and
small (5), so that the interatomic distances correspond just
to the DLO:

ILS' = I3-

Notice that the difference in atomic sizes increases
the atomic packing fraction in comparison with one-
component DLO structures: For the case given by
Eq. (1), this increase reaches its maximum (about
17%). The equilibrium rss distance seems to be of minor
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FIG. l. A simple example of DLO growth: new large atom,
added to the initial CsCl cluster, violates the crystalline
ordering. This way the outer shell of the Mackay icosahedron
may be constructed around the initial cluster [11]. Single
(double) lines correspond to threefold (twofold) icosahedral
axes.

importance because the positions of small atoms are really
fixed by three or more LS bonds. During the growth, L
and 5 atoms may be stuck one by one so that (a) every
new atom would be in contact with at least three old
atoms (Fig. 1), and (b) the interatomic distances would
be in accordance with Eq. (1) (a distorted tetrahedral
packing). This way the DLO structures can be obtained
but, unfortunately, wrong positions can also arise in the
packing: For instance, a regular tetrahedron of four L
atoms produces non-DLO positions.

Perhaps there should be some additional mechanism
which suppresses non-DLO atomic configurations, but it
is not the aim of the present consideration. Here we
simply postulate the DLO in growing clusters and address
another part of the problem: What is the mechanism
which selects between quasicrystalline and crystalline
DLO structures? It will be shown that the oscillating
interatomic potentials, typical for metals, may be respon-
sible for the selection. Their importance for the stability
of quasicrystals was demonstrated earlier [15—17] (for
more wide applications, see [18,19]). Those oscillations
are a result of electronic contribution to the interatomic
forces, and the Friedel wavelength of the oscillations,
AFO, is determined by the Fermi momentum kF (AF0 =
7r/kF) The electronic . effects are frequently dominant in
quasicrystals [20]; however, to our knowledge, they have
never been used in the growth models.

Our computer simulations are based on the Eden
model of alloy quenching previously used for decagonal
quasicrystals [7,21]; it means that any atom, being once
attached to the "best" position, has no further move
(perhaps a more realistic approach may be obtained
within molecular dynamics simulations [22]). The growth
process begins with a seed DLO cluster (3—50 atoms).
Then, according to the postulated DLO, trial positions are
generated at all vertices of the coordination dodecahedron
around each atom. Every next atom is stuck to the trial
position of the lowest energy; this rule is not local, but
it means physically that the position with the lowest
energy has a much larger sticking coefficient [6]. If
there are several positions with the lowest energy, then

we add the atom to the first found one. In the present
simulations we ignore those positions, which correspond
to six-dimensional body centers [2—4], because they give
only about (3—5)% of all atoms. Geometrically our model
is similar (with the factor r ) to the icosahedral glass
models [8—10], but it has another physical content.

The most decisive step is the selection of the trial
positions by energy. Here it is supposed that the energy
E of a trial position is proportional (a) to the number
of atomic bonds, Nb, „d,relating this position with the
atoms of the cluster, and (b) to the energy of each bond,
Eb»d(rbond), which dePends only on the bond length
rb,„dbut not on the bond direction:

bond
+bond Ebond (r bond ) ~ (2)

A detailed analysis of "realistic" potentials Eb„„d(r)is
beyond our computer facilities; therefore, the simulations
are performed for several model potentials to understand
which parameters are most important. The potentials are
assumed to be local: Eb,„d(r)= 0 if r ) 2r3 = 5 A and

Ebo„d(r) = +oo if r ( r3 (the hard core). In this range,
DLO generates only a few different rbond. (i) r3 and r2
(the first shell), (ii) Q7/4 r2 and ~2 r2 (the first gap shell),
(iii) Qr + 3/4r2 = ag and rr2 (the outer shell of the
Mackay icosahedron), and (iv) Qll/4r2 and ~3r2 (the
second gap shell).

We assign the following energies to the bonds: E3 =
Ebond(r3) E2 Ebond(r2)~ E1g bond($7/4 r2)
Eb „d(V272), EM = Eb „d(Qr + 3/4 r2) = Eb„„d(rr2),
and E2g = Ebond($11/4 r2) = Ebond(~3r2); it seems
natural to assign the same energy to the bonds with
almost the same rb, „d. Therefore each model po-
tential is characterized by a string of five energies:
Ebond(1 ) (E3 E2 Eig EM E2g); really, we have four
independent parameters, because the common factor is
not important. To speed up the calculations, all the
energies are assumed to be dimensionless integers.

The analysis of the ideal quasicrystalline structures and
experimental data [2—4, 16] shows that the distances (ii)
and (iv) correspond to the gaps in the radial atomic
distributions; hence the name "the gap shells. " On the
other hand, those distances are rather common for the
CsCl structure. To suppress the growth of crystalline
structures and to obtain those gaps in the growing clusters,
we assume that E]g and E2~ are positive; whereas E3, E2,
and EM, which correspond to dense-populated shells, are
negative. For such potentials, we have typical structural
frustration; the most dense local order (CsCl) is not
favorable at medium-range distances. This can result in
more complicated DLO structures, where the frustration
is partly relieved because those unfavorable distances are
minor or even absent.

The first potential (case I) is Eb»d (r) =
(—1, —1, 0, 0, +oo); it means that the distances corre-
sponding to the second gap shell are forbidden because
they cost infinite energy. The total energy of allowed
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positions is proportional to the sum of r3 and r2 bonds
(for case I, the preliminary results have been published
elsewhere [23]). Notice that larger forbidden distances
(about 13 and 18 A) have been used in the icosahedral
glass models [10]. The clusters (up to 2 X 106 atoms)
grown with this potential have well-defined fivefold
facets with growth steps (Fig. 2). The steps correspond
to dense-populated puckered atomic planes normal to
fivefold axes. Such a pentagon dodecahedron shape is
rather common for our model within a wide range of
parameters.

If Eb«d(r) = (—1, —1, 0, 0, E2g) and Ezg 0, then the
growth process gives CsC1-type clusters. However, even a
small positive value of Egz = 0.2iEzi destroys the growth
of the CsC1 structures in favor of aperiodic structures;
hence the growth is very sensitive to the value of F2g. In

contrast, Fig is not so important. Small changes of FI,~
produce a minor effect if other F, are fixed.

Some of the oscillating potentials [for instance,
Eb»d(r) = (—9, 0, 1, —4, 1), case II] result in clusters
with rounded threefold facets (an icosahedron shape).
The analysis of possible faceting shapes, similar in a way
to cluster model [24], will be given elsewhere.

Several tests have been applied to investigate the
quality and average icosahedral symmetry of the grown
clusters. First, we have found practically no differences
in the relative frequencies of the twenty shortest bonds
r3 (both for whole clusters and for different growth
directions). Second, the average coordination numbers for
different interatomic distances, N(r), are approximately
the same for cases I and II and similar to those found
for the Al-Cu-Fe quasicrystals [3]: N(rs) = N(r2) = 6,
N(rtg) = 4, N(ait) = 8, N(rr2) = 14, and N(r&, ) « I.
In comparison with the ideal Mackay icosahedron, where
N(ag) = 12 and N(~rz) = 30, this shell is more than half
populated and many large fragments of the outer shells of
the Mackay icosahedra may be found.

For more sophisticated tests, we have used the diffrac-
tion patterns (Fig. 3) and the six-dimensional embedding
of grown clusters [Figs. 2(c) and 4]. The normalized
intensities of rellections, I(q), are calculated as 1(q) =
i g fi, exp(iq rk) i /N, where fI, and rq are the atomic
scattering factor and the position of the kth atom, fk

= fL

or fs, fs + fr = 1, q is a wave vector, and N is the total
number of atoms. The concentrations of I and 5 atoms
are not predetermined, but in the grown clusters they are
almost equivalent; and therefore the quasilattice is auto-
matically face centered (L and S atoms correspond to two
sublattices); this leads to 7. inliation for the fivefold and
threefold rejections. The widths of peaks are determined
mainly by finite sizes of the clusters; hence our growth
process preserves a nonperiodic translational order. Nev-
ertheless, slightly different positions, widths, and heights
of the peaks provide evidence for phasonic disorder.

1

C. , '

i

~ ~

~ ~ ~ ~
~ ~

tO ~
~ ~

~ ~
~i ~
~0

~ i ~I ~
~ 4 ~

~ ~
~ ~ ~ ~

~ ~
~ ~

~ ~
~ ~ ~

0 ~
~ ~

o ~
~ ~

~ ~
~0 ~

~ ~ ~

~ ~
~ ~

~ ~ ~

~0 ~

~ o
~ ~

~ ~
~ '
~0~ ~

~ ~

~ ~
\

~1

~ ~
~ ~~ ~

~ ~ ~
~ ~~ ~

(c)~ ~~ ~
~ ~ ~

~0
0

04~
~ ~
~ 0
~ ~

~ ~
~ ~

0 ~

~ ~~ 4

~ ~
~ ~

~ ~
~ ~

~ ~

0.5~ ~0 ~ ~
~ ~

~ ~ ~ ~
~ ~ ~ ~ ~ 0

~ ~

~ ~

~ ~

~ ~
~ ~0

~ \

~ ~
~ ~

~ 0
~ ~
~ ~

0

~ ~
~ ~

~ 0

~ ~
~ ~

~ 0

~ ~

0
~0

~ I
~ ~
~ ~~ ~~ ~ ~

~ ~ ~ ~
~ ~

~ ~
~ ~

~r

~ ~

~ ~

~ ~
~ ~

~ ~
~ ~

~ ~ ~

~ ~ ~

~ ~
~ ~

~ 0

\ ~ ~ ~
~ ~~ ~

0
~ i

~ ~
~ ~

~ I
~ ~

~ ~
~ ~

~ ~ ~

~ ~ ~
~ ~

~ ~ ~ ~

OJ
C9
C)

~ ~~ ~

0
~ ~

~ ~

~ ~ ~ ~ ~

~0

~1

~ \

~ o~ ~
~ ~ ~

~ 0 ~

~ ~

~ ~ ~ ~~ ~~ ~
~ ~

~ ~
~ ~

08.5 8.8 8.9
I~ Ii2

8.6 8.7 9.1 9.2
FIG. 2. The view along a twofold axis on the quasicrystalline
cluster (case I, 6000 atoms). (a) The L and 5 atoms are drawn
in proper scale; the L atoms are darker; numerous five-atom
rings can be found on the fivefold facets. (b) Atoms are
drawn as points to show the atomic planes normal to fivefold,
twofold, and threefold directions; the directions correspond to
numbered arrows. (c) The twofold view in the perpendicular
space (1.5 X 105 atoms); it is practically the same for the I.
and for the S atoms.
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FIG. 3. Simulated diffraction patterns for a cluster of about
2 X 106 atoms (case I, atomic scattering factors: fi = 1.3,
fs = 0.7). Longitudinal scans are plotted for all icosahedrally
equivalent peaks [six fivefold (lg, 29) and fifteen twofold
(20, 32) reflections]. Dashed lines mark the exact icosahedral
peak positions. For reference, the (110) refiection from the
CsCI crystal (2 &C 106 atoms) is also shown.
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FIG. 4. The root-mean-square perpendicular radius rms(r~)
as a function of the cluster size in the physical space N'
for different interatomic potentials (without relaxation). The
dashed line corresponds to an ideal quasicrystal.

This phasonic disorder becomes especially evident if
the grown cluster is embedded into a six-dimensional cu-
bic lattice so that the position of any atom in the per-
pendicular space, r, is determined by its position in the
physical space, r. In the ideal quasicrystals, r is re-
stricted by an acceptance domain. In the grown clusters,
the distribution of r is almost spherical and well local-
ized [see Fig. 2(c)]; a rather rare halo surrounds a dense
central part. Hence our real-space growth process results
in something like a fuzzy acceptance domain in the per-
pendicular space; the domain size may be characterized
by the root-mean-square radius which increases with in-
creasing r (see Fig. 4). Such nonsharp boundaries can be
responsible for decreasing the peak intensities and for the
diffuse scattering observed in quasicrystals [25].

In the grown clusters, as in ideal quasicrystals, a spe-
cific atomic movement, connected with phasonic jumps,
is possible: many atoms can jump to other positions, ei-
ther along twofold directions or along fivefold directions
(the corresponding jump lengths, rzz ' and ajtz, are
shorter than interatomic distances). Owing to the jumps,
the phasonic "relaxation" can be simulated; namely, it is
supposed that a phasonic jump is allowed only if its final
position has lower energy than the initial one (the inter-
atomic potential is the same as at the growth stage). Be-
ing completely three dimensional, the relaxation process
nevertheless improves the six-dimensional image of the
cluster. More frequently, atoms jump to positions with
smaller r . However, the overall improvement is not sig-
nificant; perhaps another potential and/or a thermalization
process should be used at the relaxation stage.

In summary, we have shown that imperfect quasicrys-
talline structures can grow as a result of frustration be-
tween short-range and medium-range interatomic forces.
The grown clusters are faceted at the macroscopic scales;
they correspond to a face-centered icosahedral lattice, and
they can relax via phasonic jumps.
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