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Photonic Band Gaps: Noncommuting Limits and the "Acoustic Band"
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We study the photonic "acoustic band" for both square arrays of dielectric and infinite refractive
index cylinders. We show that the effective refractive index defined by this band does not have a
continuous limit as the cylinder refractive index approaches infinity, and we explain this physically.
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The idea that singly, doubly, and triply periodic dielec-
tric lattices can be designed to possess photonic band gaps
has attracted wide attention, both theoretically and experi-
mentally [1,2]. The absence of electromagnetic modes
inside a photonic band gap can lead to unusual physical
phenomena. Thus, atoms or molecules embedded in such
a structure, called a dielectric crystal, can be locked in
an excited state if the energy of this state, relative to the
ground state, falls within the photonic band gap. In this
case, the atoms (or molecules) are also expected to exhibit
an anomalous Lamb shift. At the same time, in a dielec-
tric crystal new types of electron-photon interactions ap-
pear leading to a specific behavior of light.

The most widely used theoretical approach in calculat-
ing the photonic band structures relies on the treatment
of the full vector Maxwell equations by means of plane
wave expansions [3—5]. In this method, the field and
the dielectric constant are expanded in infinite series of
plane waves, so that the problem is reduced to an infinite-
dimensional eigenvalue problem. Because plane wave ex-
pansions converge slowly, this method requires a large
number of terms in the series, in order to obtain accu-
rate numerical results. By truncating the series, the high
frequency components are removed. Also, the dielectric
constant is poorly estimated near spatial discontinuities
[6—8]. For metallic systems at high frequencies the di-
electric constant may exhibit a very large imaginary part
and the plane wave expansions become impractical [9].
The numerical techniques used to avoid these difficulties
still require the evaluation of large determinants by com-
plicated and time consuming algorithms.

In a series of papers we have extended Rayleigh's tech-
nique [10] from electrostatic to full electromagnetic prob-
lems, for singly [11—13], doubly [14—16], and triply [17]
periodic systems. Rayleigh's method involves a set of lat-
tice sums which consists of sums over terms with a func-
tion evaluated at each lattice point, and the evaluation of
lattice sums is the most important and subtle part of this
technique. The main reason is that the definition of lattice
sums involves conditionally converging series over the di-
rect lattice, and a direct evaluation is thus impractical if

high accuracy is needed. The lattice sums involved in our
method are represented in terms of absolutely converging
series over the reciprocal lattice, and, in contrast to the
method used by Ewald [18], these series may be acceler-
ated by succesive integrations to any order. By introduc-
ing the lattice sums, we obtain a representation of Green's
function in terms of a rapidly convergent Neumann series.
Also, the representation in terms of absolutely converging
series allows us to have some physical insight into the an-

alytic properties of the lattice sums. For the coefficients
in the multipole expansions of fields we have obtained a
generalized Rayleigh identity.

Our method is capable of studying, numerically and
analytically, problems in which the dielectric constant is
piecewise constant and may take finite or infinite values.
Because there are no series expansions of the dielectric
constant, the method may also be applied in cases when
the dielectric constant takes on imaginary values. This
method is also consistent with an approach which has
been used for static studies of composites, and is therefore
suitable for studying the homogenization problem (in
which an effective uniform refractive index is attributed
to a composite material) [19].

In this Letter, we consider the diffraction of a plane
electromagnetic wave by a periodic array of dielectric
cylinders embedded in a host medium. The geometry
of the system is specific to photonic band gap studies;
i.e., the cylinders have the axes parallel to the z axis
and the incident plane wave has the wave vector ko
perpendicular to the axes of the cylinders. Consequently,
the components of the fields are independent of z.

In the case when the host medium is an isotropic homo-
geneous dielectric in which the electromagnetic wave has
the wave number k, the equations for the components of
the electric (E) and magnetic (H) field decouple and each
field component satisfies the two-dimensiona1 Helmholtz
equation. At the same time, the problem can be reduced
to solving two independent problems: (i) for s polarization,
when the electric field is along the g axis perpendicular to
the plane of propagation, and (ii) for p polarization, when
the electric field is parallel to the plane of propagation.
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for —~ ( f ( ~, and with 5 &(k, ko) the lattice sums
for the corresponding array. For infinite refractive index
cylinders, in the limit e ~ ~, in the homogeneous system
(5) the coefficients M&(~) are replaced by

( ) Yg(ka)
Mg J,(ka)

' (7)

Y~(ka)
M J,'(ka)

The zeros of the determinant in (6), for ko in the
irreducible domain of the first Brillouin zone, define the

We consider the unit cell of the array, containing one
cylinder of radius a and refractive index N, centered at
the origin of coordinates. For this unit cell, in the host
medium, in polar coordinates (r, 0), the general solution
of the two-dimensional Helmholtz equation has the form
(r oa)

V(~)(r) = g [A~ Je(kr) + Br Yg(kr)je', (1)
g= —oo

where r is the radius vector in the x-y plane, y labels the
polarization (s or p), U(') = F, „and V, ~ = H, , Also,
J and Y are Bessel functions of the first and second kind,
respectively. Inside the cylinder the solution is (r ( a)

V; (r) = g C( Jr(Nkr)e', (2)
g= —co

where V(') = F;, and V(") = H;, . The solution (1),(2)
has to fulfill the boundary conditions at the surface of the
cylinder, and the quasiperiodicity condition [15,16]:

(3)
Here, Rp is a vector from the origin of coordinates to
the center of the pth cylinder (the pth node of the ar-
ray). The boundary conditions (the continuity of tan-
gential components of E and H at the surface of each
cylinder) provide us with a relation of the form A&~ =
—Mg~~~Bg~~. In the case when the host medium consists
of free space (dielectric constant eo and magnetic perme-
ability p, o), and the cylinders have the relative dielectric
constant e and the magnetic permeability p, o, the coeffi-
cients M&~~) take the form

(,) NJ~(Nka)Y(, (ka) —Je(Nka)Yr(ka)
Mg (4)

NJ~(Nka) Jg(ka) —Je(Nka) J~(ka)

J&(Nka) Y~(ka) —NJr (Nka) Y&(ka)
Mg (5)

J~(Nka) Jg(ka) —NJr(Nka) J~(ka)
'

where N = ~a represents the refractive index of the
cylinders and the prime indicates the derivative of the
corresponding function.

Following the extended Rayleigh method, we obtain the
multipole coefficients B&~~~ from the generalized Rayleigh
identity [14—16]:

Mg Bg + g (—1)™Sg(k, ko)B~~) = 0, (6)

dispersion curves for photons propagating through the
periodic structure. In the coordinate system k vs ko the
lowest values of k form an "acoustic band, " if for ko ~ 0
then k ~ 0 [20]. We obtain what is termed the quasistatic
limit for small ko if k —nko. This is attained for p
polarization at long wavelengths and normal incidence
[21]. In this limit the effective refractive index of the
structure is given by N = I/a. This effective refractive
index is obtained by investigating the phase change of V,
across the unit cell [22]. For p polarization and in the
dipole approximation [i.e., truncating the homogeneous
system (6) to —1 ( Z, m ( 1], from (6) and (5) we obtain
the Maxwell-Garnett formula

(8 + 1) + f(e —1)N" (e) =
(~ + I) —f(e —1)

(9)

where f = naz is the filling fraction. Equation (9)
defines another effective refractive index, usually justified
by electrostatic arguments [10,23,24]. At the same time,
for infinite refractive index cylinders, the same method
applied to (6) and (8) leads us to the formula [22]

N„* = (I + f)'~'. (10)

From (9) and (10) we may conclude that

(12)

N" 4 lim N*(e) . (1 1)

This difference resides in the behavior of the coefficients
(5) and (8) in the quasistatic limit. Actually, we have the
noncommuting limits

lim lim M~ 4 lim limM~
(p) . . (p)

Q~O g—+oo ~~oo )t(.~0
To check numerically the noncommuting limits (12)

we consider the dispersion curves for a square array of
cylinders in air, for p polarization. The array constant is
d and the ratio of the cylinders radii to the array constant
is a/d = 0.472, corresponding to a filling fraction f =
0.70. First, we assume that the cylinders have a dielectric
constant e = 50 [see Fig. 1(a)]. In this case, the effective
refractive index evaluated in the quasistatic limit is
N* = 2.5184. We compare this with the value of the
effective refractive index for the same array calculated
using electrostatic rather than electromagnetic theory:
N,*, = 2.5171 [23]. Then, we consider that the cylinders
have an infinite refractive index [see Fig. 1(b)]. Now,
the effective refractive index is N* = 1.4945, while the
static effective refractive index is N„= 2.7263 [23]. The
dipole approximation (10) gives N" = 1.3038. In both
cases, we have truncated the system (6) to —12 ( 8, m (
12. This truncation order has been chosen so that the
numerical stability of the results is assured [22,23].

Also, for d = 1 cm the band gap exhibited by the dis-
persion curves for a = 50 is characterized by a midgap
frequency g = 3.9 GHz and a gap width Ag = 1 GHz
(Ag/g = 26%), while for infinite refractive index cylin-
ders we have g = 16.9 GHz and Ag = 12.5 GHz
(Ag /g = 74%).
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TABLE I. The effective refractive index (N') of an array
of dielectric cylinders as given by (6), with a truncation
—8 ( 8, m ( 8, for different values of filling fraction (f) and
dielectric constant of the cylinders (e).

0.4

0.2

0.0
(a)

0.212
0.283
0.363
0.454
0.554

10

1.1920
1.2661
1.3601
1.4822
1.6495

10

1.2354
1.3300
1.4541
1.6243
1 ~ 8801

103

1.2403
1.3373
1.4651
1.6416
1.9101

10

1.1023
1.1350
1.1685
1.2147
1.2646
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A numerical check of the noncommuting limits is
also presented in Tables I, II, and III. Thus, in Table I,
we display the values of the effective refractive index
N* for an array of dielectric cylinders, evaluated for a
truncation —8 ( 8, m ( 8 in (6). In Table II we present
the effective refractive index for the same array in an
electrostatic field, the values being obtained by using the
Rayleigh method [23,24]. It can be seen that the results
given by the generalized Rayleigh identity (6), in the
quasistatic limit, agree very well with the results given
by the classical Rayleigh identity, over a large range of
filling fractions and dielectric constants.

The effect of noncommuting limits (12) appears in
the case of very large values of the dielectric constant
of the cylinders. In such cases, displayed in the last
column in Table I, the dynamic effective refractive index
differs substantially from the static effective refractive
index (the last column in Table II) and agrees with the

FIG. 1. Photonic band structure of a square array of cylinders
in air, for p polarization. The ratio of the cylinder radii to
the array constant was 0.472 (the filling fraction f = 0.70).
The dielectric constant of the cylinders was e = 50 (a) and
e = ~ (b). In both cases the system (6) has been truncated to
—12 ( 4, m ( 12. The inset shows the irreducible octant of
the first Brillouin zone.

TABLE II. The effective refractive index (N,*,) of an array
of dielectric cylinders in an electrostatic field [23], for differ-
ent values of filling fraction (f) and dielectric constant of the
cylinders (e).

0.212
0.283
0.363
0.454
0.554

10

1.1920
1.2661
1.3601
1.4822
1.6495

10

1.2354
1.3300
1.4541
1.6243
1.8801

10

1.2403
1.3373
1.4651
1.6416
1.9100

1.2408
1.3381
1.4663
1.6435
1.9135

dynamic effective refractive index for infinite refractive
index cylinders (the third column in Table III).

The fourth column in Table III displays the values of
the dynamic refractive index in the dipole approximation
(10). These values differ from the values in the third col-
umn as the filling fraction is increased. The explanation
of this difference resides in the fact that for concentrated
systems the dipole approximation is no longer valid, and
we have to add higher-order terms to obtain the correct
result. Thus, in the third column of Table III the dy-
namic effective refractive index has been obtained using a
truncation —20 ( 8, m ( 20 in (6), which assures the nu-
merical stability of the results.

The extension of our method to other systems is
straightforward. The lattice sums depend only on the
geometry of the lattice and the characteristics of the
incident wave, i.e., they are independent of the shape or
the dielectric constant of the inclusions. We are currently
working on the extension of our technique to periodic
arrays of elliptical cylinders and lattices of spheres. Note
that, for any shape of the inclusions, the generalized
Rayleigh identity involves linear combinations of lattice
sums in cylindrical (2D problems) or polar coordinates
(3D problems). Also, the essential physics described here
should carry over to disordered systems.

In the literature on homogenization, it is usual to state
that an effective refractive index can be attributed to a
composite material provided the wavelength of electro-
magnetic radiation is much larger than a characteristic
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TABLE III. The effective refractive index (N„*) of an array of
infinite refractive index cylinders (radius a) obtained from (6)
with a truncation —20 ~ 8, m ~ 20. The values obtained from
(10) are displayed in the last column.

0.26
0.30
0.34
0.38
0.42

0.212
0.283
0.363
0.454
0.554

1.1013
1.1334
1.1736
1.2151
1.2782

(1+ f)'"
1.1011
1.1326
1.1676
1.2051
1.2467
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