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Statistics of Topological Defects and Spatiotemporal Chaos in a Reaction-Diffusion System
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The transition between rotating spirals and spatiotemporal chaos ("spiral turbulence" ) in an
excitable reaction-diffusion system is investigated by means of statistics of topological defects of the
concentration field. The ratio of the variance and the mean value of the number of defects show a
significant deviation from unity at this point. A change of the defect dynamics within the turbulent
regime reveals a strong similarity to a liquid-to-gas transition, while a liquid-solid-like transition occurs
upon a jumplike return to the region of spiral stability.
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A variety of recent experimental and theoretical studies
revealed complex spatiotemporal dynamics in extended
systems [1—8] suggesting an analysis concentrating on ob-
jects ("particles" ), whose sphere of influence corresponds
to a characteristic length scale of the system. Thus the
correlation length (from the two-point correlation func-
tion of the dynamic variables) has been used as a mea-
sure of the extent of spatial coherence in a chaotic pattern
[9]. This quantity was shown to illustrate the transition
from spiral defect chaos to straight rills in large aspect
ratio Rayleigh-Benard convection [2], as well as the on-
set of defect-mediated turbulence in nonlinear optical sys-
tems [3]. In these systems, the correlation length is equal
to the system length in the nonchaotic phase and, there-
fore, shows a characteristic increase at the transition from
the chaotic to the nonchaotic state. In both cases, the
objects defining the coherence length were rotating spi-
rals (topological defects) of the phase field. However, for
other experiments, especially chemical reaction-diffusion
systems with excitable properties [4,5, 10], a systematic
exploration of the transition between regular patterns like
the ubiquitious spiral waves and these presumably chaotic
structures has not yet been achieved. In addition, despite
a wealth of numerical observations of disordered states
in related model systems [1,6—8], there is a lack of sys-
tematic understanding of the internal structure of such
states. In all these systems, spirals already exist in the
nonchaotic, periodic case; their number is constant, de-
pending on the initial conditions, so that there is no unique
correlation length for fixed parameters. The chaotic state
is characterized by the spontaneous breakup of spirals,
which leads to the creation of new spiral pairs [11]. Thus,
the characteristic feature of the turbulent state is a noncon-
stant number of spirals or topological defects.

This observation suggests, in general, a treatment based
on the statistics of topological defects, as done previously
within the region of defect-mediated turbulence in the com-
plex Ginzburg-Landau equation (CGLE) [1,12]. There the
rate of change of the defect number n(t) was assumed to be
n = y —pn, where y is the production rate of defects
and pn2 the rate of mutual annihilation. Both p and y

were assumed to be constant in space and time. With these
simplifying assumptions, Gil, Lega, and Meunier [12] de-
rived in a simple probabilistic model the equality of the
mean number n and the variance o. of n(t). This relation
has been confirmed in numerical simulations [12,13]. The
aim of the present paper is to show that this is not valid in
general, because the movement and spatial interaction of
the defects play an important role for the overall dynamics.
The results will be exemplified with numerical simulations
of an excitable medium with a transition to turbulence due
to spiral breakup [11].

A generic excitable medium [14] of the FitzHugh-
Nagumo type is given by
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a, v = f(u) —v. (lb)
With the standard choice f(u) = u, Eqs. (1) and related
models exhibit only stable spirals. Therefore, we use a
modified form corresponding to a delay in the inhibitor
production, which is known to possess a transition to
spatiotemporal chaos at sufficiently large e [11]:
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The decisive parameters are b (which is positive for an
excitable medium and determines the excitation thresh-
old) and e (which is the ratio of the time scales of the
fast activator and the slow inhibitor variable). For b ) 0,
the reaction part always possesses one stable fixed point
(u = 0, v = 0) and two additional unstable ones. Equa-
tions (1) actually represent a reduced version of a realistic
surface reaction model, in which the activator variable u

corresponds to an adsorbate coverage, while the inhibitor
variable v describes a structural surface change [15].

The spatiotemporal dynamics in a representative cut
through parameter space with fixed a and b (0.84 and
0.07, respectively) while varying s is as follows. In the
range 0.01 ~ e ~ 0.06, suitable initial conditions lead to
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the generation of steadily rotating spirals, whose number
depends on the initial values of u and v but assumes a
constant value after the decay of transients. At e = 0.06,
the spirals undergo a transition from steady rotation to
meandering and for a ) e, = 0.07 they break up af-
ter some transient rotations, because their smallest rota-
tion period falls below the minimum period allowed by
the dispersion relation [11]. At even higher e the reac-
tion part of Eqs. (1) undergoes a saddle-loop bifurcation
(e, l

= 0.19) which creates a stable limit cycle, but no
abrupt changes of the spatiotemporal pattern occur at this
point. With further increase of e this limit cycle vanishes
in a Hopf bifurcation (aH pf 0.2245) and chemical tur-
bulence ceases to exist. Typical snapshots of the spatial
distribution of the inhibitor concentration are shown in
Fig. 1. Near e, the pattern is characterized by spiral seg-
ments [Fig. 1(a)]; with increasing e these segments lose
their structure [Fig. 1(c)] until finally a smeared distribu-
tion is observed [Fig. 1(d)].

A topological defect is a local zero of the order
parameter (see Ref. [1]), which corresponds here to the
unstable fixed point in the reaction part of Eqs. (1), given
by the equations

The locations and number n(t) of topological defects
can be obtained numerically from the intersection of the
concentration contours up and vp [see Fig. 1(b)]. Since
below e, the tips of the spirals represent just such defects,
their study appears as a natural way to characterize
the spatiotemporally chaotic state and the accompanying
instability. For e (e„the value of n(t) reaches a
constant number depending on the choice of the initial
conditions. In the turbulent regime, n(t) fluctuates around
a constant mean value n with variance cr after a transient.
Both quantities do not depend on the initial conditions.
Simulations for different system sizes revealed that n
and tr are extensive quantities (systematic investigations
were carried out in systems with 50—100 defects; the
results were checked at selected e values with up to 1000
defects). Thus the ratio o2/n pro. vides a size-independent
measure of the state of the system.

The dependence of o. and n on s is shown in Fig. 2.
The transitions to turbulence can be distinguished with the
help of the ratio oz/n. Ap. proaching the spiral instability
it tends to zero, while towards the Hopf bifurcation it
approaches unity in accordance with the prediction given
in [12]. The value of o /n can be related directly
to the spatial distribution of defects by applying the
compressibility equation from hydrodynamics [16],which
was introduced in the context of nonequilibrium media in
[17]:
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1 +
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h(r —r')d r d r' (3).
25 Here A is the total area in which defects are counted,

r and r' are two-dimensional vectors, and h(r —r') is
the normalized pair correlation function for the defects,
defined as

(n(r, t)n(r', t)),
h r —r'
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FIG. 1. Typical snapshots of the spatial distribution of the
inhibitor concentration [v in Eqs. (1)] for a = 0.84 and b =
0.07, shown for e = 0.071 (a), e = 0.125 (c), and e = 0.2 (d),
after sufficient transient time. The system size is 100 X 100
spatial units; the simulation was carried out with periodic
boundary conditions, and the gray level is proportional to the
v concentration. (b) Shows the isoconcentration contours u =
0.66 (thicklines) and v = 0.484 (thin lines) for the 50 X 50
section in the upper left corner of the snapshot in (a), which
were used for the determination of topological defects as
intersections of the two lines.

Because of the isotropy of Eqs. (1), h(r —r') is also
isotropic, i.e. , a function of the defect distance r = er-
r'i only. Thus h(r) is determined from the probability
of finding a second defect at distances between r and
r + dr from a given defect. This probability is given by
27rr[h(r) + I]dr/fl Equations (3) a.nd (4) are a gener-
alization of the concept of Gil, Lega, and Meunier [12],
taking into account the inhuence of spatial correlation be-
tween defects on the defect statistics.

In order to illustrate the relations (3) and (4) for our
example, we have calculated the pair correlation functions
for different values of a. Right after the breakup
transition, h(r) exhibits a "hard core" [Fig. 3(a)] which
roughly extends over the range of a correlation length
of u. Upon increase of e, the strong anticorrelation
between defects vanishes [Fig. 3(b)], accompanied by a
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FKJ. 2. Dependence of variance rr and mean value n of the number of topological defects n(t) on e for a = 0.84 and b = 0.07
(a) and b = 0.14 (b) in the turbulent regime, averaged over 3000 time units. eb„, e, l, and eH, ~r denote the corresponding e values
of the two-dimensional breakup instability and the saddle-loop and Hopf bifurcations in the reaction part of Eqs. (1), respectively.

higher generation rate of defects (and hence decreasing
lifetimes). We also observed that defects are now gener-
ated closer to an already existing one. These effects are
linked to a secondary instability described earlier ("back-
firing", cf. Ref. [11]). The corresponding change in the
individual trajectories of defects is visualized in Figs. 3(c)
and 3(d). Close to the breakup instability, one observes
meanderlike paths of a localized nature; i.e., the rotational
modes dominate [Fig. 3(c)]. As the generation rate of de-
fects increases, this rotational motion disappears gradu-
ally, until eventually the motion is governed almost en-

tirely by translatory, diffusive modes [Fig. 3(d)]. The loss
of rotational components of the dynamics and of the hard
disk properties of defects is analogous to a liquid-gas tran-
sition, more precisely a transformation from a "hard-disk
liquid" to a "point gas."

The picture can be extended by looking at the relaxation
of turbulent initial conditions after a sudden parameter
drop in e. If the parameter is suddenly shifted to a value
of e ( e„closeto the breakup instability, a few spirals
fill large parts of the system. These spirals coexist with
pointlike defects [Fig. 4(a)]. Thus, the initially turbulent
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FlG. 3. Normalized pair correlation function h(r) for a = 0.84 and b = 0.07; e = 0.071 (a) and e = 0.125 (b). The system
size in the simulation was 200 X 200 spatial units. (c) and (d) show trajectories of topological defects over a period of 77 temporal
units in a section of 59 X 59 spatial units for the same system as (a) and (b), respectively.

1505



VOLUME 75, NUMBER 8 PHYSICAL REVIEW LETTERS 21 AUGvs T 1995

gradually decreases to zero near the spiral-breakup transi-
tion. This result may be useful for a general classification
of transitions to spatiotemporal chaos. In addition, defect
statistics should also be helpful to characterize experimen-
tal results on disordered states in related reaction-diffusion
systems.

The authors are indebted to A. S. Mikhailov for stim-
ulating discussions and W. Wolf for computational assis-
tance.

FIG. 4. Snapshots of relaxing turbulent initial conditions [see
Fig. 1(a) for e = 0.05 (a) and s = 0.025 (b) after 17000 and
4000 time units, respectively. Note that in (a) the slaved point
defects still drift in the field of the nucleated spirals, while in
(b) all defects show stable rotation.

concentration distribution slowly relaxes into a (binary)
mixture of spirals and point defects. In contrast, a jump to
small values of e well below e, transforms all surviving
defects of the initial distribution into steadily rotating
spirals [Fig. 4(b)]. Because of the purely rotating motion
of particles the latter might be called an "amorphous spiral
solid. " The very slow loss of translatory motion (drift
of pointlike defects) in the former case can be associated
with the relaxation behavior of a "binary glass. " After
the breakup, net translatory components of defect motion
do not vanish in time anymore, so that, at this point,
the picture of a "solid" to "liquid" transition is justified.
Related studies in the COLE focused on the relaxation
of random initial conditions [18] and the consequences of
the form of interaction on the arrangement of large spiral
populations [19].

It should be emphasized that the transition scenario
presented above remains valid for large parts of the
excitable region (0 ( b ( 0.18). Also in the oscillatory
case (small negative b) qualitatively the same behavior
has been obtained.

To summarize, we have shown that the statistics of
topological defects provides important information about
the structure of a spatiotemporally chaotic state. The tran-
sition from stable spirals to spiral turbulence here can be
regarded as a transition from a "spiral solid" to a "spi-
ral liquid. " Inside the turbulent region, a "liquid-gas"-
type transition appears in the defect dynamics. Moreover,
different transitions to turbulence can be distinguished:
While the ratio o. /n of the variance and mean number
of defects is unity in the vicinity of a Hopf bifurcation,
in accordance with results for the COLE, this quantity
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