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Nondispersive Electronic Wave Packets in Multiphoton Processes
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We describe how the nonlinear coupling between the unperturbed Coulomb motion of a Rydberg
electron and a linearly polarized microwave field may create an electronic wave packet of almost
"eternal" lifetime, evolving according to the classical equations of motion without dispersion. This new
quantum object owes its existence to the underlying mixed regular chaotic structure of classical phase
space and is experimentally accessible.

PACS numbers: 32.80.Rm, 05.45.+b, 42.50.Hz

The excitation and/or ionization of atomic Rydberg
states by linearly polarized microwave radiation is a
highly nonlinear process involving multiphoton transitions
of very high order within the Rydberg manifold and to
the continuum. Since this strongly nonlinear coupling
between the atom and the field induces chaotic motion
of the electron in a classical picture, it is also one of
the few domains of atomic physics where the quantum
signatures of classical chaos can be probed theoretically,
numerically, as well as by laboratory experiments, all in
one system. Since chaos manifests itself in the temporal
evolution of classical trajectories, the most appropriate
way to search for these signatures is to directly analyze
the long time evolution of a quantum wave packet initially
placed on a classical trajectory [1—3].

Conventional experimental creation of wave packets
relies on the coherent excitation of neighboring Rydberg
states of the unperturbed atom by a short optical pulse
[2]. However, the anharmonicity of the unperturbed
Rydberg spectrum induced by the nonlinearity of the
Coulomb interaction —implies the dispersion of these
wave packets on a time scale longer than T —n, with
n the mean value of the principal quantum number of
the unperturbed eigenstates spanning the wave packet,
and T the associated Kepler period. Obviously, it is
desirable to counterbalance the dispersion, in order to
dispose of a quasiclassical quantum object for arbitrary
experimental exposure times, and to launch the quantum
wave packet along a well-defined classical trajectory. We
shall outline how to achieve both of these aims in the
present contribution.

As has been shown earlier [4,5], the Floquet eigenstates
of one-dimensional, periodically driven systems with non-
linear classical dynamics may reflect faithfully the un-

derlying invariant structures of classical phase space. In
particular, for the hydrogen atom restricted to one spatial
degree of freedom, the principal nonlinear resonance be-
tween the atomic and the driving frequency (i.e., atomic
frequency nearly equal to and in phase with the driving
frequency), which is the largest island of stability embed-
ded in the "chaotic sea" of classical, mixed regular chaotic

phase space [6], creates a coherent eigenstate of the atom
in the field [5—7]. The purpose of the present paper is
to demonstrate how such a robust structure of stable mo-
tion in mixed phase space creates a "quasiclassical" quan-
tum eigenstate of the real quantum system, as, e.g. , in
3D hydrogen exposed to a linearly polarized microwave
field. This eigenstate of the atom in the field whic—h os-
cillates with the driving frequency —exhibits the charac-
teristic properties of a wave packet evolving according to
the classical equations of motion, but does not disperse.
The nonlinear interaction between the atom and the field
counterbalances the dispersion mechanism induced by the
nonlinear Coulomb interaction and locks the oscillations
of the Rydberg electron and those of the external field.
Since eigenstates of a quantum system can in principle be
excited by resonant excitation, the present study may open
a new way to generate quantum wave packets with well-
defined classical analogs.

The Hamiltonian describing the hydrogen atom in a
monochromatic, linearly polarized microwave field of
constant amplitude F and frequency ~ reads, in the length
gauge and in atomic units,

p
2

0 = + Fz cos(rot) . (1)
2 r

As described in earlier work, a complex dilation of
the Floquet-Hamiltonian associated with H allows us to
obtain the energies, the widths, and the associated Floquet
eigenstates of the atom in the field [8].

Since we are interested in comparing the quantum
dynamics to the underlying classical motion, we shall
characterize the interaction between the atom (prepared
in an initial state of principal quantum number no) and the
field by the values of the scaled variables cop and Fp,

Fp = npF, cop = npccp, (2)
that derive from the classical scaling properties of (1)
and completely determine the structure of classical phase
space [9]. Throughout the remainder of this paper we
chose ~p

= 1.304, which allows comparisons with a
typical situation in the microwave experiments performed
by the Stony Brook group [10].
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Let us first reconsider the coherent eigenstate of the
hydrogen atom restricted to one degree of freedom, in a mi-
crowave field of amplitude F = 2.36865 X 10 a.u. =
12.18 V/cm and frequency cu = 5.47145 X 10 6 a.u. =
27r X 36 6Hz with (quasi)energy e = —1.299 X
10 4 a.u. (corresponding to principal quantum number
no = 62 and scaled variables Fo = 0.035 and coo =
1.304). Figures l(a) —1(c) show the temporal evolution
of this time-periodic eigenstate of the atom in the field,
which solves the Floquet eigenvalue equation

(0 —i& )lp) = ~IN) (3)
lf) is a wave packet trapped by the principal resonance
in classical phase space [6,7] and evolves according to
the regular solution of the classical dynamics, without
dispersion. It mimicks a classical trajectory that evolves
in phase with the field with the same period T = 2~/ru.
The observed localization of the wave packet can only be
realized in a strongly nonperturbative situation. Indeed,
the time evolution of the periodic wave function is not a
simple oscillation at frequency cu but also involves higher
harmonics. In a multiphoton language, this means that
building such a wave packet requires contributions of
multiphoton processes of various orders, with well-defined
amplitudes and relative phases, a phenomenon not easy
to explain without referring to the underlying classical
dynamics.

Note that the apparent (but transient) "dispersion" of
the wave packet on a time scale shorter than T [Fig. 1(c),
and equally Figs. 1(d) and 2(c) further below] refiects
nothing but the probing of the Coulomb singularity by
the electron and is completely consistent with the classical
dynamics [6]. It is the quantum manifestation of the
strong acceleration of the electron in the immediate

vicinity of the nucleus and therefore of classical origin.
The usual dispersion known from wave packets created by
the coherent superposition of distinct Rydberg states with
different energies of unharmonic spacing cannot occur
here since the observed wave packet is made up by one
single (Floquet) eigenstate of the system, with one single
(quasi)energy.

The width of this wave packet eigenstate (i.e., the
field-induced continuum coupling) is insignificant with re-
spect to the maximum precision of the numerical calcula-
tion, corresponding to an eternal lifetime of the electronic
wave packet (I ' ~ 10'3 a.u. —= 242 p, s). Such a life-
time is comparable to the natural lifetime (due to spon-
taneous emission, a phenomenon neglected in the present
approach) of Rydberg states with no = 60.

Another solution of (3) is shown in Figs. 1(d)—1(f), cor-
responding to a coherent state placed on the hyperbolic
point associated with the principal resonance, but con-
taminated by the ingoing and outgoing probability flux
along the stable and unstable manifolds crossing at this
point in phase space [6,7]. This is why obvious inter-
ference structure persists at any phase of the field. The
electronic density is strongly peaked at maximum distance
from the nucleus, at a phase cot = ~ of the microwave.
Since the associated classical trajectory is highly unstable,
the quantum wave packet formed by the Floquet state can
trace the classical trajectory only for a short time, and yet
it displays the important feature of evolving in phase op-
position (out of phase) with respect to the driving field. It
is exactly this dephasing by ~ that defines the hyperbolic
point and hence the irregular classical solution. Finally,
despite the strong instability of the classical trajectory,
this "contaminated" or "irregular coherent state" was also
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FIG. 1. (a)—(c) Coherent Floquet eigenstate of the hydrogen atom restricted to one spatial dimension in a linearly polarized
microwave field of amplitude F = 12.18 V/cm and frequency co/27r = 36 6Hz [corresponding to Fo = 0.035 and coo = 1.304
for no = 62, respectively, see Eq. (2)]. We show the periodically (T = 2~/cu) evolving wave packet at phases cut = (a) 0,
(b) vr/2, (c) ~. The state evolves according to the regular solution of the classical dynamics, in phase with the microwave
field, and is to be associated with the principal resonance between the atomic and the driving frequency (equality of microwave
and Kepler frequency). It does not disperse and has eternal lifetime (r ) 242 p, s). Quasienergy e = —1.299 X 10 a.u. (d)—
(f) "Contaminated" coherent Floquet state, for the same field parameters and phases as (a)—(c). The state evolves according to the
irregular solution of the classical dynamics, in phase apposition with the microwave field, and is to be associated with the principal
hyperbolic point in classical phase space [6,7]. Even this quantum eigenstate associated with an unstable classical trajectory has an
eternal lifetime (r ) 242 p, s). Quasienergy e = —1.293 X 10 a.u.
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found to have an "eternal" lifetime (as the "regular" coher-
ent state discussed before), a feature that we attribute to its
localization along a cantorus (acting as a barrier that in-
hibits quantal probability transport [11])in classical phase
space [5].

Do similar "classical" eigenstates exist for the real hy-
drogen atom in a microwave field? To answer this ques-
tion, we investigated the Floquet spectrum of 3D atomic
hydrogen in a field of amplitude F = 1.96 & 10 a.u. =
1007.8 V/cm and frequency cu = 1.07175 X 10 4 a.u. =
2~ X 705 6Hz, in the vicinity of the no = 23 energy
shell, with mo = 0 the value of the (conserved) projection
of the angular momentum onto the polarization axis of the
field. This corresponds to Fo = 0.0549 and ~o = 1.304.
Note that the only difference with the microwave experi-
ments performed at Stony Brook [10]are the higher values
of no in the laboratory experiments. A numerical treatment
of the 3D hydrogen atom in a microwave field at prin-
cipal quantum numbers no = 60 and scaled frequencies
coo = 1 is not yet feasible due to computer memory limi-
tations. However, we checked in our above 1D hydrogen
calculations that the properties of the Floquet states we are
discussing here do not change qualitatively from no = 60
to no = 23 [5]. Classical structures that are resolved for
no = 23 will certainly prevail for no = 60, since the ef-
fective size of 6, i.e., of the quantum mechanical coarse
graining of classical phase space decreases correspond-
ingly from R/23 to 6/60, as we approach the semiclassical
limit by increasing no.

The result of our investigation is plotted in Fig. 2. Fig-
ure 2(a) shows the one-cycle averaged electronic density
of a Floquet state of the 3D hydrogen atom in a microwave
field, with properties analogous to those of the eigenstates
shown in Fig. 1 ~ This state extends only along the z axis,
hereby retaining a completely one-dimensional character.
Its effective one dimensionality makes this state a perfect
candidate for the comparison to the 1D dynamics of the
wave packets shown in Fig. 1. The periodic time evolution
in both half spaces is completely independent, and this is

actually due to the spatial degeneracy of the problem with
respect to the z = 0 plane. The latter can be most easily
seen by investigating the interaction part of the Hamilton-
ian (1), Fz cos(tot) R.eplacing z by —z is equivalent to a
phase shift of ~, i.e., to the replacement cut ~ cut + m.
Thus, the temporal evolution in the z ) 0 half space is
symmetric to the evolution in the z ~ 0 half space delayed
by a phase shift ~. This is shown in Figs. 2(b) —2(d), and
helps us to identify the classical motion mimicked by this
eigenstate. Take the electronic density at phase cut = 0
of the field, Fig. 2(b). At this instant, there are two dis-
tinct, strongly localized maxima of the probability density,
each in one of the two half spaces z ~ 0 and z ~ 0, the
former one approaching the nucleus a little closer than the
latter. Because of the symmetry argument given above,
we know that the solution for z & 0 must equally appear
for z & 0, with a phase delay of ~, and vice versa. This
is what we actually observe in Fig. 2(d), which is the sym-
metrical counterpart of (b). Hence, there are two wave
packets moving forth and back from the nucleus in each
half space. The two wave packets in the same half space
are mutually phase shifted by ~, evolving in phase with or
in phase opposition to the driving field. Therefore they are
the perfect analogs of the regular and the irregular states
shown in Fig. 1, but now formed by one single Floquet
state of the real atom. We surmise that the superposition
of the two distinct 1D Floquet states in the 3D eigenstate
shown here indicates a qualitative change in the topology
of classical phase space due to the extension from three to
five dimensions.

The fact that for any sign of z there is always one wave
packet approaching the nucleus and another approaching
the apocenter makes the actual dynamics of the electronic
density relatively complicated and ensures that the distinct
wave packets are most pronounced when they reach their
outer turning points at phases ~t = 0 and ~t = ~,
respectively. However, a weak static electric field should
be sufficient to lift the spatial degeneracy and isolate one
out of two wave packets on either side.
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FIG. 2. (a) Contour representation of the one-cycle average of the electronic density p ~P(r, t)~~ of the Floquet eigenstate of the
real hydrogen atom analogous to the regular and irregular eigenstates shown in Fig. 1, in cylindrical coordinates, z, p = ~1400 a.u.
F = 1007.8 V/cm, to = 27r X 705 GHz, corresponding to Fo = 0.0549 and coo = 1.304 for no = 23, respectively, see (2).
Quasienergy e = —9.363 X 10 a.u. , lifetime r = 3.4 p, s (corresponding to about 106 unperturbed Kepler orbits of a Rydberg
electron with no = 20). (b) —(d) Snapshots of the wave packet eigenstate of (a), at phases tot = (b) 0, (c) rr/2, (d) 7r of the
driving field, on a smaller scale z, p = ~950 a.u. There are four distinct wave packets formed by the same Floquet state, two in
each half space z ( 0 and z ~ 0, respectively. These two pairs of wave packets are mutually identical, but delayed in phase by
vr [compare (b) to (d)]. In every half space, one wave packet shows exactly the same one-dimensional evolution of the regular
eigenstate of Figs. 1(a)—1(c) (see the probability maximum at cut = 0 and z ( 0), the other evolving as the irregular eigenstate of
Figs. 1(d)—1(f) (see the probability maximum at cot = m. and z ( 0).
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The width of our 3D nondispersive wave packet(s)
state is I = 7.2 X 10 ' a.u. This gives a lifetime of
r = 3.4 p, s, which corresponds to 7/2zrnri —10 Kepler
periods of an unperturbed Rydberg electron with no ——20
and is again comparable to the natural lifetime due to
spontaneous emission. Hence, as in the one-dimensional
situation, this Floquet state has a very long lifetime, also
compared to the typical interaction times in microwave
ionization experiments (only the Garching experiments
[12], on Rb Rydberg states, did scan the interaction
time over several orders of magnitude), and is essentially
nondispersive as compared to "conventional" Rydberg
wave packets discussed in the introduction.

Let us finally address the experimental accessibility of
our wave packet eigenstate. The form of the nodal lines
as observed in Fig. 2 suggests a significant overlap with
an extremal parabolic state ~ni = no —1, nz = O, mo =
0) (and, equivalently, ~ni = 0, nz = np —1, mp = 0)).
We checked this assumption, knowing from a close
inspection of the spectrum that the eigenstate of Fig. 2
originates from the no = 21 manifold of the unperturbed
atom [5]. Indeed, the eigenstate in the field has an

overlap of approximately 15%%uo with the initial state
~ni = 20, nz = 0, mo = 0). For neighboring no values

(no = 19, . . . , 24), although some other parabolic states
can contribute significantly, the overlap of the eigenstate
in Fig. 2 with the extremal parabolic state is generally
large. For example, it is still of approximately 8% with

Ini = 22, nz = O, mo = 0) Since coo = ceno = 0.99for
no = 21, this signifies, in addition, that the principal
resonance between driving field and unperturbed Kepler
motion extends from coo = 0.74 to coo = 1.49. Note
that this observation reinforces [5,13] the interpretation of
Koch's local stability at coo = 1.3 as a consequence of the
finite size of the classical principal resonance [14] rather
than of some "scar" phenomenon [10,15]. It suggests the
identification of our 3D eigenstate as the real separatrix
state [14] recently invoked in the interpretation of these
experiments. Because of the proximity of our 3D wave
packet eigenstate to extremal parabolic states it should
be the easiest accessible in Bayfield's [16] microwave
experiments.

In conclusion, the wave packet eigenstate of the 3D
hydrogen atom in the microwave field should be experi-
mentally accessible via extremal parabolic states [16],
possibly by adiabatic switching of the microwave field.
Since irregular classical dynamics induce avoided cross-
ings in the quantum spectrum, and as the state of Fig. 2 is
an eigenstate of the atom dressed by the microwave field,
a more appropriate way of accessing this state would con-
sist of its resonant excitation from the atomic ground state
or weakly excited states, in the presence of the microwave
field. Because of the prominant role nonlinear resonances
play in the transition from regular to chaotic motion, for
any nonlinear system, we expect quasiclassical quantum
eigenstates as shown in Fig. 2 to be a generic feature of
(time dependent) quantum systems [4] with mixed regu-
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lar chaotic classical counterparts. Note that, recently, the
stability regions of classical mechanics associated with the
Trojan asteroids in celestial mechanics [17,18] have been
shown to support properly placed quantum wave packets
in a numerical study of the bound state dynamics of a two-
dimensional hydrogen atom exposed to a circularly polar-
ized microwave field [17]. Our present work and earlier
studies [4—7] on the case of linear microwave polarization
let us conjecture that there exist associated "Trojan eigen-
states" of the atom in the circularly polarized field [19].
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