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Hadronic Light-by-Light Contribution to the Muon g —2
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We present a calculation of the hadronic light-by-light contributions to the muon g —2 in the
1 /N, expansion. We have used an extended Nambu-Jona-Lansinio model and introduced an explicit
cutoff for the high energy region. We then have critically studied the relative size of the high energy
contributions. Although we find them large, we can give an estimate of the light-by-light contribution to
a~ which is around 1 & 10 ' . This is smaller than previous estimates and the expected experimental
uncertainty at the forthcoming Brookhaven National Laboratory experiment.
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The high precision measurement of the anomalous
magnetic moment of the muon, a~ = (g~ —2)/2,
combined with the CERN LEP results, is expected to
provide valuable information on the electroweak sector of
the standard model and maybe unravel new physics. See
[1] for reviews of both the theoretical and experimental
status. For carrying out this program, a new measurement
of the muon anomalous magnetic moment at Brookhaven
National Laboratory (BNL) [2] aims to reduce the experi-
mental uncertainty to -4 X 10 ' . On the theoretical
side, the error is dominated by the hadronic contributions
and, in particular, by the hadronic vacuum polarization
contribution. For a recent determination of this contri-
bution and earlier references see [3]. The progress
expected in measuring the total cross section
tT«„~ (e+ e ~ hadrons) will lower the theoretical
uncertainty from this contribution down to the order of
the experimental uncertainty quoted above [3].

There is another source of hadronic uncertainty in the
theoretical calculation of a~ which has recently raised
some discussion about its reliable calculation [4—6]. It is
the hadronic light-by-light scattering contribution where
a full four-point function made out of four-vector quark
currents is attached to a muon line with three of its
legs coupling to photons in all possible ways and the
fourth vector leg coupled to an on-shell external photon
(see Fig. 1). The difficulty here is that this contribution

FIG. 1. Hadronic light-by-light contribution to a~. The bot-
tom line is the muon line. The wavy lines are photons and
the cross-hatched circle depicts the hadronic part. The circled
crossed vertex is an external vector source.

cannot be expressed in terms of experimental observables,
and thus one has to rely on our present knowledge
in treating the strong interactions. There have been
attempts to calculate this contribution in the past [7,8] and
more recently in [9]. In this Letter we mainly address
the calculation of the hadronic light-by-light scattering
contributions to a~ in the large N, limit (N, is the number
of colors). These are 6(N, ) in the 1/N, expansion. We
will use an extended Namub-Jona-Lasinio (ENJL) model
and introduce an explicit cutoff. We defer a complete
discussion and a more detailed presentation of our results
to a forthcoming publication [10].

The momenta Bowing through the three vector legs
of the four-point function attached to the muon line
run from zero up to infinity then covering both the
nonperturbative and perturbative regimes of QCD. These
two different regimes are naturally separated by the scale
of the spontaneous symmetry breaking (A~ = 1 GeV).
Above this scale the strong interaction contributions have
to match the perturbative QCD predictions in terms of
quarks and gluons. At this point we would like also
to check the current common wisdom statement that the
bulk of the hadronic light-by-light contributions to a~ is
determined by the physics around the muon mass. In
fact, this was assumed in all previous calculations. If this
was correct, we could attempt to make a pure low-energy
calculation that would saturate this contribution. Were
the contributions not negligible at some high scale, we
would need a more sophisticated model to calculate the
vector four-point function. Indeed this appears to be the
case from our results. However, at the level of accuracy
needed in the near future, a rough estimate will turn out
to be sufficient.

At very low energies (typically below the kaon mass),
the framework to study the strong interactions is chiral
perturbation theory (CHPT) and the relevant degrees of
freedom are the lightest pseudoscalar mesons (m, K,
and g). However, as emphasized in [6], there appear
counterterms in the calculation of a~ which are not
determined by symmetry arguments alone. Instead we
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will use a low-energy model. We will use an ENJL
model because it possesses the following features: It
encodes all the chiral constraints and therefore satisfies
all the QCD Ward identities (both anomalous [11] and
nonanomalous); it has spontaneous symmetry breaking;
both an 1/N, expansion and a chiral expansion are
possible; it reproduces the low-energy phenomenology
and the success of the vector meson dominance (VMD)
models. To a large extent, as shown by the Weinberg
sum rules, it also has the correct matching with the high-
energy QCD behavior. Models to introduce vector fields
like the hidden gauge symmetry (HGS) model used in

[9] do not always have such preferable behavior. These
characteristics were emphasized for a~ in [6].

See [12] for more details, definitions, and technical
points about the specific model we are using. Its major
drawback is the lack of confinement. This can be smeared
out by calculating with constituent quarks far off-shell
and color singlet observables. This model has three
parameters plus the current light quark masses. These
are fixed as to reproduce the experimental pion and kaon
masses. The three parameters can be chosen to be the
couplings of the spin zero Gq and spin one Gy four-
quark terms in the ENJL model (see [12] for details)
and, since it is a nonrenormalizable model, the cutoff
A of the regularization which we chose to be proper
time. Although this regulator breaks, in general, the
Ward identities, we impose them by adding the necessary
counterterms including those for the anomaly [11]. The
values of the parameters we use are the ones obtained in
the first reference in [12] from a fit to low energy data:
Gs = 1.216, Gv. = 1.263, and A = 1.16 GeV. Then the
constituent quark masses solution of the gap equation
are M„= Md = 275 MeV and M, = 427 MeV. The
hadronic vacuum polarization contribution was estimated
within the ENJL model in [6] using a procedure similar to
the one below. The result agreed within about 15% with
the one in [3].

Let us proceed to the calculation itself. We calculate
to all orders in the chiral expansion. Notice that this
is needed, since we are integrating over three of the
vector momenta. In previous calculations the lowest
order CHPT result was convoluted with a naive VMD
propagator. It is not clear how this procedure preserves
the QCD Ward identities and the CHPT expansion itself.

At leading order in 1/N, there are two classes of
hadronic light-by-light diagrams contributing to a~. The
first one is shown in Fig. 2(a). This is a pure full four-
point function with a constituent quark loop and the
three vector legs attaching to the muon line dressed by
full two-point functions. These full two-point functions
are the sum of strings with one, two, , ~ constituent
quark loops and can be found in [12]. There are six
possible permutations for each quark flavor. The leading
order in the CHPT expansion of this contribution is
6(p ) and thus potentially sensitive to the high-energy

(a)

(b)

FIG. 2. The two classes of hadronic light-by-light contribu-
tions to a~ at leading 6(N, ). (a) The four-point functions
class. (b) The product of two three-point functions class. The
dots are ENJL vertices. The circled crossed vertices are where
photons connect. The cross-hatched loops are full two-point
functions and the lines are constituent quark propagators.

region. The other class is shown in Fig. 2(b). Here
we have two one-loop three-point functions with two
vector legs on each one and glued with a full two-point
function that can be either pseudoscalar, scalar, mixed
pseudoscalar axial vector, or axial vector. The vector one
does not contribute. The three vector legs attaching to the
muon line are dressed with full two-point functions. The
leading order in the CHPT expansion is 6(p ) for the
pseudoscalar exchange and 6(p ) for the others. There
are 12 possible permutations for each quark flavor.

Although the sum of the contributing terms is UV
finite, each of them can be logarithmically divergent
and one has to rely on potentially dangerous numerical
cancellations. Instead, we used the method proposed in
[13] to construct individually UV safe quantities. This is
achieved by making use of the gauge invariance in the on-
shell photon leg. We then construct the quantity in (2.9)
of [13]. Momentum integrals are performed numerically
in Euclidean space. This allows us to impose physically
relevant cutoffs on the photons' momenta.

The contribution of the first class of diagrams in
Fig. 2(a) can be written as a seven-dimensional integral,
which we have evaluated using the Monte Carlo routine
VEGAS. As a check we have reproduced the constituent
quark and muon loops results in [8] and the electron loop
results in [14]. Since we are dealing with a low-energy
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model, we want to study the dependence on a high-energy
cutoff p, on the vector legs' momenta. The result only
stabilizes at a rather high value of p, . For a bare con-
stituent quark with a mass of 300 MeV, the change be-
tween a cutoff of 2 GeV to a cutoff of 4 GeV is still
around 20%. The change from 0.7 to 2 GeV is typi-
cally a factor of 1.8. This invalidates the use of any low-
energy model to calculate the complete hadronic light-by-
light contribution to a„. The bulk of these contributions
does not come from the dynamics at scales around the
muon mass as it is often stated. This also explains
the rather high sensitivity to the damping provided by
the vector two-point functions observed in [8,9]. Al-
though the only rigorous result is for scales smaller than
0.6—1 GeV, one still obtains an estimate. Mimicking the
high-energy behavior of QCD by a bare constituent quark
loop with a mass of about 1.5 GeV gives only an addition
of —0.2 X 10 ', and if there is any VMD suppression it
will be even smaller. This we will take then as the uncer-
tainty due to the high-energy region contribution and the
ENJL result where it stabilizes as our estimate.

Let us now turn to the second type of contributions
in Fig. 2(b). This contribution can be factorized into
a five-dimensional integral, which we have evaluated
using the Monte Carlo routine VEGAS times two two-
dimensional integrals and one one-dimensional integral
that we have evaluated using Gaussian integration. Here,
again we have followed the prescription in [13] to
calculate the contribution to a~. We have used two
different approaches to calculate the quantity in (2.9) of
[13]. The first one is using the Ward identities for four-
point functions and the second one is using the Ward
identities for three-point functions. Both agree exactly.
We have done the same study of the cutoff dependence as
for the four-point function contribution finding essentially
the same conclusions. In Table I we have listed the
8(N, ) hadronic light-by-light two leading contributions
to a~ and their sum for the up and down quarks as a
function of the cutoff together with the errors quoted by
VEGAS. Since the integrand is rather irregular, this error
estimate is somewhat on the small side (see also [15])and
will be largely superseded by the error in our final result.
Notice that the result for a„ in Table I is more stable
after adding the two contributions than separately. The
contribution from the strange quark is in the range of the
quoted errors in Table I. Here we used nonet symmetry.
The effects of the U(1)~ breaking tend to lower the r)
and 7l' exchange contributions [10]. The charm quark
contribution we calculate with a bare quark loop damped
with cc meson dominance propagators in the photon legs.
This contribution is very small. Both scalar and axial-
vector exchange contributions are again in the range of the
quoted errors in Table I. We therefore take as an estimate
of the leading 6 (N, ) hadronic light-by-light contributions
to a~ the result in Table I plus the strange and charm
quarks contributions. We also add the scalar and axial-

TABLE I. Results for the 6(N, .) in the l /N, expansion two
dominant hadronic light-by-light contributions to a„ in the
ENJL model for up and down quarks.

Cutoff
(GeV)

a~ && 10' from
Constituent
quark loop
in Fig. 2(a)

a~ X 10' from
Pseudoscalar

exchange
in Fig. 2(b)

a„X 10~"
Sum

0.7
1.0
2.0
4.0
8.0

1.14 ~ 0.02
1.44 ~ 0.03
1.78 ~ 0.04
1.98 ~ 0.05
2.00 ~ 0.08

—0.36
—0.46
—0.63
—0.75
—0.88

~ 0.01
+ 0.01
~ 0.01
~ 0.03

0.05

0.78
0.98
1.15
1.23
1.12

light-by-light)
( p 45 ~ 0 80) X lp 10 (2)

We will return to this contribution in [10]. Adding the
above 6 (N, ) and 6 (I) results, we get our final estimate

ligh -by-ligh (0 8 ~ 0 9) X lp
—10 (3)p,

A more general comment is that although a HGS model
can be derived from the ENJL model, this is only true
after a series of approximations. In HGS models the
consistency between the parameters in the anomalous
and nonanomalous sectors is not obvious. In the ENJL
model we are using the same parameters appearing in
both sectors. This is particularly important for the Aavor
anomaly contribution to the light-by-light scattering. For
instance, the calculation in [9] assumes complete VMD
for the anomalous sector. It was shown in [11] that
complete VMD breaks the anomalous Ward identities. A
prescription to include vector and axial-vector couplings
was given there and was used in the present work.
We find the pseudoscalar-exchange contribution to be
negative but roughly between 5 times and 1 order of
magnitude lower than the values quoted in [8,9]. It,
however, agrees with the order of magnitude estimate
in [5] and is then of the same order as the pseudoscalar
meson loop contribution.

vector exchange contributions:

light-by-light) (I 2 ~ p 5) X lp 10

The error includes the one from the integration routine
VEGAS as shown in Table I multiplied by 5 plus the
estimate of the high energy contributions uncertainty.

In addition to the leading 6 (N, , ) result above, there are
the contributions from pion and kaon loops. These are
6(1) in the I/N, expansion and have to be added to the
6(N, ) result in (1). We have seen that the lowest order
CHPT result is damped by roughly the same factor in both
the constituent quark loop and the pseudoscalar meson
exchange contributions and that the high-energy region
contributes significantly. This can be used to estimate
that the result in [9] for the pion and kaon loops is in
the right ballpark when vector mesons are included. As a
first estimate we take the number and error from [9]
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Our calculation establishes that, contrary to previous
calculations [7—9], the contribution to a„ from light-by-
light scattering is positive and smaller than or around
1 X 10 ' . This is safely in the range of both the aimed
experimental uncertainty at BNL and the theoretical
error from the vacuum polarization contribution. It thus
removes an important theoretical uncertainty in the in-

terpretation of the muon g —2 results from the planned
BNL experiment.
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