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Formation of Dynamic Domains in Strongly Driven Ferromagnets
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Based on the dissipative Landau-Lifshitz equation, the spatiotemporal structure formation problem
is investigated in the region far above the transverse ferromagnetic resonance instability. Apart from
the external fields, the model contains an isotropic exchange field, a shape demagnetization field, and
an anisotropy field. Numerical simulations exhibit in the rotating frame a stationary domain structure
with a precessing motion in the wall regimes. Employing analytical methods, characteristic elements
of this structure are explained. This driven dissipative system shows similarities to equilibrium systems
of coexisting phases and organizes itself in such a way that the local dynamics tends to become
Hamiltonian.

PACS numbers: 75.60.Ch, 05.70.Ln, 76.50.+g

Ferromagnetic systems strongly driven by external
transverse magnetic fields have been under investigation
for more than four decades (for the early work see
[1]). Based on a nonlinear spin-wave expansion around
the homogeneous ground state, Suhl [2] showed that
certain modes become unstable for increasing amplitude
of the pump field. Detailed measurements exhibit beyond
threshold many of the phenomena predicted by the general
theory of nonlinear dynamics. Based on [2], truncated
spin-wave mode models have been published, which
successfully describe the experimental findings (for a
recent, comprehensive presentation see [3]).

Apart from single exceptions like the simulations of
Elmer [4], who found dynamic domains for a special
model, the existing investigations are limited to the weak
nonlinear regime. The regime far above the instabilities
with pump amplitudes of the order of the demagnetization
field remains an open question (compare [5], p. 1075).

This question is of high interest in the general theory
of spatiotemporal pattern formation in dissipative systems
[5]. At the beginning of this modern and interdiscipli-
nary field of research Anderson [6] proposed that a driven
ferromagnet is the characteristic example for pattern for-
mation and for the general problem of how the concepts
of equilibrium phase transitions can be extended to driven
dissipative systems. Recently, Cross and Hohenberg [5]
raised doubts about this proposal.

It is mainly the dipole interaction that makes pattern
formation in ferromagnetic materials a difficult problem.
The difficulties already arise in the undriven case [7]. In
a first step, the theory of static ferromagnetic structures
[8] usually employs an approximation. Above all, stray
fields are omitted and only the part of the dipole interac-
tion which describes the shape demagnetization fields is
considered. Even in this approximation many interesting
results have been obtained [8] both for the formation of
static structures and for the wall dynamics.

Using this approximation for the dipole field, this
work addresses the pattern formation problem in driven

magnetic systems. Focusing on the region far above
threshold, it is the aim of the present investigations to
work out general features and mechanisms by employing
both analytical and numerical methods. It is beyond the
scope of this paper to improve the existing near threshold
treatments, as this would certainly require the complete
dipole field used in the spin-wave approaches.

At a mesoscopic scale the dynamics is governed by the
Landau-Lifshitz equation as was recently demonstrated by
microscopic investigations [9,10]. In the frame rotating
with the driving frequency cu around the e, direction, this
equation of motion takes the form

m = —m X (H' —cue, ) —I m X (m X H' ). (1)

m(r, t) and H'tr are the local magnetization and the
effective field in the rotating frame, being related to
the quantities m~, b and H&,'b in the laboratory frame by
m&, b

= exp(cute, X)m and by H&, b
= exp(cute, x)H'",

respectively. I represents the Landau-Lifshitz damping
rate. In reduced units the gyromagnetic ratio and the
magnitude of the magnetization m = ~m~ are equal to 1.

Specifying the model under investigation, it is assumed
for the effective field that

H' = h~~e, + h&e —m + Jhm + Am, e, , (2)

where h~~ and h& are the amplitudes of the external static
and the external circular driving rf field, respectively. The
term m = V ' f m dV represents, again in reduced units,
the demagnetization field of a sphere of volume V. fhe
contribution JAm results from the isotropic ferromagnetic
exchange interaction. A uniaxial anisotropy is described
by Am, e, .

In the first part of this Letter the results of numeri-
cal simulations in one spatial dimension with an arbitrary
se direction m(r, t) ~ m(g, t) are rePorted using Periodic
boundary conditions m(g, t) = m(g + L, t) These inves-.
tigations were performed on a vectorized supercomputer.
The program uses a Euler integration scheme in time and
is based on semispectral methods.
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These simulations exhibit a temporal evolution of
m($, t) which is characteristic for structure formation in

dissipative systems. After a period of transient behavior,
which strongly depends on the special initial state and
which may be very complex, a tendency toward the
formation of domains is found. In the early stage these
domains interact with each other, merging into domains of
larger size. With increasing time and increasing domain
sizes, this process slows down and finally the structure
becomes stationary on large time scales.

Figure 1 shows such a final domain state obtained by
a long-time study starting from a randomly disturbed,
homogeneous initial state. The magnetization is nearly
everywhere constant, taking the values m+ or m, respec-
tively. In contrast to this behavior within the domains,
a strong time dependency is found in the narrow wall
regimes which separate the domains. As Figs. 2 and 3
demonstrate, the magnetization m at a fixed position is
anharmonically oscillating with a characteristic internal
period of rotation Tp„, which is found to be indepen-
dent of the specific position. This spatiotemporal wall
structure is dynamically very stable. In the simulations
no changes of any significance could be found for times
corresponding to 104 periods of Tp„.

It should be pointed out that this wall structure as
well as the macroscopic quantities I+, m, m, and Tp„
are independent of the specific initial state and thus are
characteristic elements for the structure formation.

To analyze these characteristic features found in the
simulations a perturbative approach has been worked out
using the multiple-time scaling method and treating the
contributions Jhm and /Im, e, as perturbations [11]. The
theory has been worked out up to the first order. The first
order treatment is lengthy and rather technical [12]; thus I
restrict myself here to the zeroth order.

In this order Eqs. (1) and (2) reduce to

m(r t) = —m X Hl —I m X (m X H2)

d =
hei

—cap,

v = (u' —r'h')' '
(d2 + I 2) I /2

(
2 + h2)1/2

were introduced. The magnitudes of the fields H 1 and H2
are calculated to take the values

0] = co LEW H2 = Mhg&
—

1

Because of the m term, the problem described by Eqs. (3)
and (4) is of the mean field type and the usual technique
can be applied. For the present case this would imply
solving Eq. (3) for given m(t) as a first step. Integration
of the obtained solution m(r, t) over the sample volume
V would then lead to a self-consistency condition for
m(t), from which m(t) and the complete solution can in

principle be obtained. In general this procedure cannot
be performed, as already the analytic solution of the first
step is not known [13]. The fixed points of Eq. (3),
however, and their stability can explicitly be determined

by applying the mean-field procedure.
The results of this, basically straightforward, fixed point

analysis show that marginally stable solutions exhibiting
a domain state structure are possible. The local magne-
tization m(r) takes only two values m+ and m realized
in the generally disconnected partial volumes V+ = n+ V

and V = n V, respectively.
In such domain states the fields Hl and H2 become

orthogonal,

Hi H2 =0,
and it is advantageous to write the results in terms of
the internal coordinates introduced by e~ = Hl/H~, e2 =
H2/H2, and e3 = el X e2. The transformation from the
internal to the primary frame is found to be

(e, l I ( —dh& —du I wl (ei l
eY = I h I u dw e2, (6)

(e, )
'

( —u' uh, 0) (e, )
where

with

H2 ——Hi + ~e, = h~ie, + hi e, —m(t) .

and the domain magnetizations are found to be given by

m = u '(+ve) + I h~e3) . (10)
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FIG. l. Spatial dependence of a stationary domain state in the rotating frame. Plotted are cos@ = ml(m~ + m&)
'/' and m3, where

m; are the components of the local magnetization in the internal coordinates, defined by Eq. (6). The simulation uses 1024 mesh
points and the parameter values h~i

= cu = 2, h~ = 0.5, J = 0.01, A, = —0.005, j. = 0.1, and L = 1024.
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For the bulk magnetization in a domain state, the self-
consistency condition leads to

md, = n+m+ + n m

and the n are calculated to be

1 dw + co Lf
n, + = —+

2 2&v
(12)

The domain states exist only in a subspace of the parame-
ter space spanned by h~~, h&, ~, and I . This subspace
is implicitly determined by the condition 0 ~ n+ ( 1.
For parameter values outside this subspace Eq. (3) has
a different stable fixed point solution characterized by a
homogeneous magnetization m(r) = mh, . These homo-
geneous states, being of minor interest for the present
work, are unstable in the regime where the domain states
exist. Apart from the domain and the homogeneous states,
no other stable fixed points of Eq. (3) exist.

Next, the findings of the linear stability analysis about
the domain state fixed points are presented. Employing
the usual exp(At) ansatz for the deviations, one finds for
all modes with the exception of four

A = ~iA with 0, = cavd (13)

FIG. 3. Spatiotemporal structure of m3 in the vicinity of a
wall. Definitions and parameter values as in Figs. 1 and 2.

qe)+y'me

FIG. 2. Spatiotemporal structure of cos@ in the vicinity of
a wall located at g, ~~ with T~,„= 18.6. Definitions and
parameter values as in Fig. l.

which implies that they are undamped and oscillat-
ing with A. The four remaining modes are of collec-
tive character as they describe disturbances of the form

Jy [m(r, t) —m ] dV. The characteristic equation
for these collective modes is found to be given by

0 = ~A+A
~

—2n+n v u [Re(A+A*) —n+n ]
—n+n —2n+n I h~u [Re(A+A ) —n+n ],

(14)
where A = (A ~ if')/(I + t) + n was introduced. It
has been shown analytically for the weak damping case
(I (( 1) and numerically for the general case that the
collective modes are damped everywhere. Note that this
implies relaxation of m(t) to mq„

Under the constraint m(t) = md, , the analysis of
Eqs. (3) and (4) can be extended to the nonlinear regime.
Employing Eq. (9), this leads to

m = —cow [u m X e~ + I h&m X (m X e2)]. (15)

(16)

For this equation of motion the quantity

m~ (r, t) [I'h& m3(r, t) —u] ' = VC(r)

is a constant of motion and Eq. (15) is integrable, as
in addition m~ + m2 + m3 = 1 holds. Equation (16)
represents a plane and thus the resulting motion of m(r, t)
is a precession on a cone at an arbitrary but fixed position
r. This precession is found to be anharmonic with the
period of rotation of T~,„=2~0, ' independent of r.

The values of C(r) are restricted by the condition
~C(r)~ ~ 1, as otherwise the plane (16) does not intersect
with the sphere. For the limiting values C(r) = ~1 the
plane becomes tangential and consequently m becomes
time independent taking the fixed point values m of
Eq. (10). Thus a wall is characterized by a change from
C = —1 to C = 1. Considering now the U ~ limit,
the constraint m(t) = md, can be satisfied, as long as the
entire wall volume goes to zero faster than U.

Summing up, the analysis of Eqs. (3) and (4) has shown
that stable solutions of domain type do exist. In the
domain regions the local magnetization is stationary but
precesses with Tp in the wall regime. It is obvious
that these results are qualitatively in accord with the
numerical findings. Using the parameter value of the
simulation, quantitative agreement is found for md, , for
m, for n, and for Tp,„. The deviations are less than
1%. Recall also that the numerical results of Figs. 1 —3
were already presented in terms of the internal coordinates
(6). Furthermore, the numerical results show that the
motion in the wall regime is planar and well described by
Eq. (16). Finally, the first order treatment [12] of Eqs. (I)
and (2) is able to explain with high accuracy the complete
spatiotemporal wall structure of Figs. 2 and 3.

Some features of the present investigation which may
be of general interest should be pointed out.

The behavior of this dissipative system driven away
from equilibrium in the stationary domain state is
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analogous to a thermodynamic system at a first order
equilibrium transition exhibiting coexisting phases. The
translational symmetry is broken for the domain structure.
Macroscopic variables, such as in the present case md,
m, and n, are independent of the initial conditions
and only depend on the external parameters like h~(, hJ,
and co. In this context Eq. (5) has to be interpreted as
the criterion for existence of the domain states. Note
that this criterion reduces for the static case (co = 0)
to h~~e, + h&e —md, = 0, which means that the
internal field vanishes. As this is the usual criterion for
a ferromagnet to be at the equilibrium phase transition,
some aspects of the present work can be interpreted as an
extension of the concepts of phase transitions to driven
systems.

Another interesting aspect of the present work is the
local generally nonlinear dynamics within the domain
regimes. As long as the sample is sufficiently large, this
local dynamics is integrable or is Hamiltonian according
to the investigations of Eq. (15). Although the system
becomes weakly dissipative in the first order treatment
[12], it is worthwhile to point out this tendency of
the system to organize itself on the global macroscopic
scale in such a way that the local mesoscopic dynamics
becomes at least nearly Hamiltonian.

In this context it is interesting to go back to the mi-
croscopic scale [9], where the system is a quantum me-
chanical many body spin system in contact with a bath of
sufficiently low temperature. It is basically the compe-
tition between the short ranged exchange interaction and
the long ranged repulsive dipole interaction which leads to
the formation of structure and to the nearly Hamiltonian
dynamics on the mesoscopic scale.

Ferromagnets are representative of a whole class of
many body systems characterized by short ranged attrac-
tive interactions in competition with long ranged repulsive
interactions. Thus the question arises whether the ten-
dency toward a local Hamiltonian dynamics is generic for
all these rather common systems. Should this be the case,
it would perhaps become clear why structure and Hamil-
tonian dynamics are so widespread in nature.

Coming back to the ferromagnet, it is pointed out that
neither the location nor the geometric shape of the walls
is determined by the present approach. By analogy with
the static case [8], it is expected that the dipolar stray field
and the usual boundary effects will reduce this freedom.
The formation of regular patterns in driven ferromagnets
seems to be possible.

For completeness, the results of this work are special-
ized to the weakly nonlinear regime h& « l. For sim-
plicity, the discussion will be restricted to cu =

h~~ and

to I « 1. A critical value of the pump field h'"' =
I'(h~~ —1)'l2 results. For h~ ( h'"' the homogeneous
state is stable and for h& ) h'"' the domain states arise.
As in this work the dipolar stray field is neglected, h'"'
differs from the threshold values of [2], which under
usual conditions are smaller than h'"'. Lastly, the find-
ings for the power absorption P will be given. For the
homogeneous state P = I 'h~ and for the domain states
P = I'h~~h~(I' + h2~) ' are obtained. This result implies
an experimentally well established [1,3] saturation of P
for h& » I . Thus, as a side product of this work it must
be concluded that this saturation is not solely explained
through spin-wave approaches.
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