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Application of Operator Algebras to Stochastic Dynamics and the Heisenberg Chain

R. B. Stinchcombe and G. M. Schiitz
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OXl 3NP, United Kingdom

(Received 14 December 1994)

Algebraic manipulations are used to reduce a new description of stochastic dynamics and quantum
spin chains involving two nonlocal operators C, D. For the symmetric hopping of hard-core particles,
and its associated Heisenberg chain, the operator algebra may be written in the reduced form
2D = [[C,D], C '], 2D2 = CDC 'D + DC 'DC The.se equations are shown to describe diffusive
dynamics and phase change on interchange, respectively, and to lead to Bethe ansatz equations for the
spectrum of the isotropic Heisenberg chain with symmetry-breaking boundary fields. This yields new
exact results for the dynamics of boundary-driven systems.

PACS numbers: 75.10.Jm, 02.50.Ey, 05.40.+j, 05.60.+w

The representation of interacting stochastic particle dy-
namics by quantum spin systems has been providing valu-
able insights into nonequilibrium behavior and complex
dynamics (see, e.g. , [1—10], and references therein). In
particular, it has given many new results by exploiting
standard techniques for quantum spin models, such as
Bethe ansatz and related approaches [1—5,11], spin wave
theory [6,12], and global [7,8] and broken symmetry argu-
ments [6]. Perhaps the simplest nontrivial example is the
representation of symmetric diffusion of hard-core parti-
cles (known as the symmetric exclusion process [13,14])
by the Heisenberg model (see, e.g. , [7] for a detailed dis-
cussion). Other stochastic processes whose representation
by quantum spin systems has proved useful are asymmet-
ric hopping [1—3,8] and related growth processes [15,16],
multimer evaporation and deposition [6], and large classes
of reaction-diffusion processes [3—5,9,10].

An elegant algebraic approach has recently been in-
troduced for the treatment of ground states of quantum
spin chains [17] and particularly for the steady states of
one-dimensional stochastic exclusion processes [18,19].
These states correspond to the ground states of the re-
lated spin Hamiltonians, in the simplest case to the fer-
romagnetic Heisenberg Hamiltonian with suitably chosen
boundary fields. In this algebraic approach particle and
vacancy configurations are represented by strings of sym-
bols, D or F. The steady state probability of such a con-
figuration is given by a particular matrix element of the
string, with the symbols now regarded as operators obey-
ing a suitable associative algebra. The states involved in
the selection of the matrix element(s) are determined by
boundary conditions (e.g. , particle injection), while the al-
gebra of the operators is determined by the bulk dynam-
ics (see below). It should be noted that in contrast to
ordinary (equilibrium) statistical mechanics the boundary
conditions are of major importance, since they may induce
phase transitions [3,20] related to shock behavior [19,21].
This algebraic technique provides a very convenient and
economic framework for the derivation of solvable re-
cursion relations for the matrix elements of the operators

and therefore for the calculation of steady state correlation
functions. These recursions (and their solution) have been
obtained directly from the master equation [22,23], but
this approach is not readily generalizable to other models.
Two conceptually most important questions raised by the
algebraic treatment, however, remained open, namely, the
conditions under which such a matrix ansatz is successful
and how one can understand the algebra derived from the
bulk dynamics of the process. Another question posed by
this algebraic treatment is whether it can be generalized to
describe time-dependent properties of the system.

Subsequently, a generalization of the technique to the
full dynamic stochastic problem has been given [24]. This
answers the third of the above-mentioned questions. As
well as providing a new direct approach for the treatment
of one-dimensional stochastic dynamics of interacting par-
ticle systems, it gives a new operator algebra description
of the corresponding quantum spin model. The algebra
has been briefly presented elsewhere, but without devel-
oping its consequences [24]. The purpose of this Letter is
to exploit this algebra.

In particular it is used here to obtain by purely algebraic
techniques new results for both stochastic and quantum
spin systems, and to provide extremely efficient deriva-
tions of old ones, such as the Bethe ansatz. On the one
hand, we derive explicitly the time evolution of the den-
sity profile in the symmetric exclusion process (hard-core
hopping) driven by biased boundary injection and absorp-
tion, and starting from an arbitrary initial condition. We
also discuss the time evolution of n-point density corre-
lation functions on a cyclic chain with translationally in-
variant initial conditions. This second result is implicitly
known from the Bethe ansatz, but the first result is new.
On the other hand, our algebraic approach to the dynamic
problem gives a partial understanding of the mathemati-
cal properties underlying the algebra in terms of results
known from the quantum inverse scattering approach [25]
and is a first step towards an understanding of the general
applicability of the matrix method. Furthermore, it yields
a physical understanding of the algebra as it is shown to
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describe free diffusive motion of the particles and phase
change on interchange of two particles and the reduction
of multiparticle interactions in terms of two-particle inter-
actions. Contact is thus made with Yang-Baxter equations
and with factorization properties of the scattering matrix.

The description employs three site-independent (non-
local) operators C (= D + E), D, and S, where D and
S are time dependent. Probabilities (which in quantum
language are wave functions) are given as in the station-
ary case by matrix elements of products of these opera-
tors. The algebra is determined so that the probability
of finding any configuration satisfies the master equation
(the Schrodinger equation in Euclidean time defined by
the corresponding quantum Hamiltonian). This new ap-
proach has already been shown to give statements equiva-
lent to the action of the spin-1/2 Heisenberg Hamiltonian
on a complete basis of spin states [24]. An essentially
different feature is the site independence of C, D, and S
in contrast to the local description of the process in terms
of site-dependent Pauli matrices in the Heisenberg chain.
Whereas the Heisenberg problem turns out to be solvable
by the Bethe ansatz, we derive the Bethe ansatz equa-
tions from the operator algebra. Moreover, we explicitly
obtain the Bethe ansatz equations for the system with par-
ticle number breaking boundary conditions and use this
to derive the time evolution of the density profile. These
boundary conditions are known to retain the integrability
of the system [26,27], but no concrete results have previ-
ously been derived.

The detailed description, which now follows, be-
gins with asymmetric hard-core particle diffusion
[14,18,22,23,28], with hopping rates p, q to the right and
left, on a chain of I, sites. We consider two types of
boundary conditions: (a) open boundary conditions with
particle injection and ejection (boundary driving) at the
boundaries of a finite chain, and (b) periodic boundary
conditions. In case (a) we allow for arbitrary initial
conditions while in case (b) we restrict ourselves to
translationally invariant initial conditions. We derive
the time-dependent operator algebra, which illustrates
the general strategy. The detailed results outlined above
are then presented for the symmetric exclusion process
(l =q)

Following the discussion of the stationary problem
[18], we represent an arbitrary state of the particle or
spin system by a string of L operators, D or E, e.g. ,
EEDEDDD. . . E. Here D or E at the kth position in the
string represent a particle or a vacancy (spin up or down)
at site k. Using the master equation for the process, we
have shown elsewhere [24] that the (unnormalized) time-
dependent probability of the associated configuration can
be expressed as a matrix element (EEDEDDD. . . E) of
the string. For this, D —= D(t) and the time-independent
operator C = D + E have to be matrices satisfying the
algebra

SC+DC=A,

CS —CD=A,

DD + DD = [D, S].

(2)

(3)

Here the dot denotes the derivative with respect to time t,
A = qCD —pDC + (p —q)D, and S is related to the
current. The symbol ( ) denotes, in case (a), a matrix
element between time-independent vectors (W~ and ~V)
determined by the boundary conditions, while in case (b)
it denotes a trace. The conditions on (W~, ~ V) are

(W~t(n + y)D —nC —S + D) = 0, (4)

((P + 6)D —6C + S + D)iU) = 0, (5)

where n, y are the rates for particle injection, ejection
at the left hand boundary site 1, and 6, p are those
for the right hand boundary site L, in case (a). To ob-
tain normalized probabilities, the matrix element (. . )
has to be divided by the factor Zl. = (C ). The sta-

tionary problem corresponds to the special case D = 0
with S an arbitrary c-number. Then (3)—(5) yield the
algebra and conditions of Derrida et al. [18]. It is in-

teresting to note that in this case the expectation values
(C"' 'AC"' "' A. . .) are the current correlations be-
tween sites ni, n2, . . . on the chain. Equation (1) implies
A = SC, which in turn implies that in this invariant ma-
trix product measure k-point current correlators are space
independent (for ~n;

—nj ~

~ 2). In a usual c-number in-
variant product measure k-point density correlations are
space independent (for

~
n; —

n~ ~

~ 1).
In this Letter we consider the full dynamic problem.

Introducing the inverse C ' of C reduces (1)—(3) to

2D = [A, C '] ~ [[C,D], C '], (6)

0= AC 'D —DC 'A

CDC 'D + DC 'DC —2D (7)

2S= AC '+ C A ~ CDC ' —C 'DC. (8)

Eq —= 1 cosq (10)

in terms of the initial matrix 23~(0) and the "energy" eq.
Moreover, (7) can be written as 0 = f dq'23q 23~ ~ (1 +
e '& —2e'& 'q). Since this holds for all times (and all

The arrows indicate the reduction, which occurs in the
case of symmetric hopping. Relations (6) and (7) together
with (4) and (5) in case (a) provide a complete description
of the model in terms of just two nonlocal operators C
and D together with the inverse C

From now on we discuss only the symmetric model

p = q = 1. It turns out to be useful to construct
operators D„= C" 'DC ' and their Fourier transforms
'D~ = Q„D„e px(i nq). The time dependence of D~ is
now simply obtained from (6)

'Dq(t) = e "'23q(0),
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q), it can be divided into separate time components, each
of which must vanish. This leads to

23~, 23q, = S(qi, qz)23', 23~, ,

e iqi +iq2 2e iq2

1 + etql+tq2 —2eiqi

These results together with

C23qC ' = e '~23q, (13)
resulting from the definition of 23~, have a direct and intu-
itive interpretation. C acts as a lattice translation operator.
Equations (9) and (10) express the diffusive motion of the
particles, and (11) and (12) express the phase change ex-
perienced on exchange of particles. In S(q&, qz) one read-
ily recognizes the two-particle scattering matrix element
known from the Bethe ansatz and in the quantum inverse
scattering method [25]. Indeed, (11) is just the algebra
satisfied by the reflection matrices arising in the treatment
of the nonlinear Schrodinger equation and the Heisenberg
chain [25]. The associativity of the algebra (which guar-
antees that there are no separate equations for D", n ) 2)
is the analog of the factorization of the many-body 5 ma-
trix into two-particle amplitudes. The new insight is that
the whole system can be described in terms of just two
(nonlocal) operators D, C and that this description does
not depend on the system size.

As a specific application, consider the correlation func-
tion for m particles at positions (x;) at times (t;) for the
symmetric exclusion process with periodic boundary con-
ditions [case (b)]:

Ml, ,l((t, )) = Z 'Tr[D„(t,). . . D, (t )C ] (14)

(12)

( m
' e ""' T((;)) (15)

Here the normalization ZL = TrC, and T((q;)) =
Zt Tr

l 23~, (0). . . 23~ (0)C ]. Using (11)—(13) and the
invariance of the trace under cyclic permutation, one finds
that T((q;)) vanishes unless g, i q; = 0 and

iq;L S(q, , q) V i, (16)
j=l

where the product excludes j = i. These are the well-
known Bethe ansatz equations for total momentum zero
[11],which arise directly and naturally from the operator
algebra [particularly from (7) via (11)]. Matrix elements
which are not determined by the operator algebra are
given by the initial conditions by expressing 23~(0) in
terms of Ml, l(0). An explicit further calculation of the
correlation function for general I is far from trivial, but
the methods have been discussed elsewhere [29].

For a second application we turn to symmet-
ric hard-core diffusion with injection and ejection
at the boundaries [case (a)]. Here the relaxation
will be towards a nontrivial nonequilibrium steady
state. The I-point correlation function has the

same form as in (15) but with Zt = (WlC lV) and

T((q, )) = Zt (Wl23~, (0). . . 23~ (0)C lV). To analyze
this expression we extract from D, the static parts [e.g. ,

by using (9) and taking q ~ 0]. These are 23p and I,
where I = g„nC" 'DC ". As a result one may write

D, = 23p + I —x23p + 23 e
dg
2~ (l7)

where the integral now excludes q = 0. With f~(a, b) —=

a + b —1 + e'q one obtains

0 = (WlC((n + y l)23p + (n + y)I n), (18)

o = (wlc(f, (n, y)23, + f,(n, y)23, ) (q ~ o),

(19)

o = ((p + a —1)23, + (p + a)I —6)lv), (2o)

2tq,-L
q;

t S(q;, qj) Vi,
S(q;, —

q, )
(22)

= f ( ~ y)f -(P, ~)lf -( ~ y)f (P, ~). (23)

These equations are the main result of this paper.
They are the generalization of the known Bethe ansatz
equations (16) for the Heisenberg chain with periodic
boundary conditions to the system with open boundary
conditions corresponding to generalized surface fields in
spin language [24,26]. Via (10) they give the spectrum
of the quantum Hamiltonian. Expressing T((q;)) in
terms of the initial condition MI, , &(0) and replacing the
integral over q by a sum over the solutions of (22) gives
then an explicit expression for the time evolution of the
correlation function starting from an arbitrary initial state.

As an example, consider the density profile

—
1 q —i x —e tM, (t) = p + Z ' e '~ "'(Wl23 C lV),

(24)
with p, =—M, ( ) = Z '(Wl(I —(x —1)23o)C lV).
This static part is clearly linear in the particle position
x. With [I,C] = C23p and (18) and (19) one obtains
[24,30] (L ~ ~ at fixed x/L)

n x( n
M, ( ) =

n+y L( +ny P+6)
For the special case n + y = p + 6 = 2 the time-
dependent profile turns out to have a simple expression
in terms of modified Bessel functions:

L

M (t) = p —g a [C (t) —C, (t)], (26)
y=1

(25)

0 = (f-,(P, ~)23, + f,(P, S)23-,)lv) (q w o).
(21)

Using (13), (19), and (21), a cycling procedure readily
gives T((q;)) vanishing unless
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where C„(t) = exp( —t) g „I„+z L(t) and the aY are
arbitrary constants defining the initial condition. In the
generalization to I-point correlation functions, the static
part Ml, ,&(~) is easily seen to be a product of factors each
linear in a given x; [cf. (17)], and the effect of (11) in
the cycling process also introduces the particle exchange
phases into the time-dependent terms. This is a new result
for the dynamics of the driven system.

The algebraic approach illustrated in the applications
discussed above is only one method for exploiting the
operator description provided by (1)—(3) [with (4) and

(5) in the boundary driven case]. An obvious alternative
is to find explicit matrix representations of the operators
C, D, as has been done for the steady state problem
[18]. A discussion has been given [24] of a matrix
representation for the zero-current time evolution of the
periodic system (b), and of the open system with injection
rates chosen such that n p = 7 6. More general reaction-
diffusion processes with n ) 2 allowed states per site
may be represented by an algebra of operators A&, . ~ . , A„.
A problem not yet fully understood is the relationship
between such a generalized algebraic technique and the
integrability of the system under consideration. The
recovery of the algebra satisfied by the refiection matrices
arising in the quantum inverse scattering method for the
process studied here strongly suggests that an algebraic
treatment of the kind proposed here for the dynamics or
as discussed earlier for steady state properties of more
general models is possible if, and only if, the system is
integrable.

In conclusion, we have given a method for ex-
ploiting an operator algebra involving three nonlocal
operators, which describes the full static and dynamic
behavior of a stochastic interacting many-particle system
and of its equivalent quantum spin model (the Heisen-
berg chain). Suitable operator manipulations clearly
exhibit the physical characteristics of the system and
provide an understanding of the relations satisfied by
the operators. By such means correlation functions for
periodic and open boundary-driven systems have been
reduced, and the Bethe ansatz equations have been recov-
ered (in the case of periodic boundary conditions) and
generalized (to open boundary conditions with particle
injection and ejection). This has led to a new result for
the time-dependent density profile of the open stochastic
system with arbitrary biased injection and absorption.
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