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Exact Soliton Solutions for a Spin Chain with an Easy Plane
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Exact soliton solutions for the Landau-Lifschitz equation for a spin chain with an easy plane are
found by using the method of Darboux transformation matrix.
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Some years ago, a 1D magnetic system with an easy
plane anisotropy and in an applied magnetic field was
mapped onto a sine-Gordon (sG) system [1]. Neverthe-
less, apart from the questions concerning quantum effects,
which are particularly bothersome for the case of CsNiF3
with spins 5 = 1, the mapping from a spin model to a
sG system has not been rigorously established except for
T ~ 0, where, in any case, quantum effects are crucial [2].

As shown by neutron-scattering experiments [3] in
CsNiF3, the mapping of an easy plane ferromagnet. in
a field to a sG system is inadequate. This shows also
that out-of-plane fIuctuations are of crucial importance at
high temperatures. At sufficiently high temperatures, one
naturally expects isotropic spin chain dynamics to become
a satisfactory approximation [4]. At moderately high
temperatures, the effects due to easy plane anisotropy play
an important role. The Landau-Lifschitz (L-L) equation
for a spin chain with an easy plane was previously
unsolved [5]. It is impossible to find, as mentioned by
Tjio and Wright [6], the general stationary (i.e., depending
on x —vt) solution. Solutions of this type given in
previous works [7,8] do not satisfy the equation even
in the approximation of first order anisotropy. For the
same reason, the attempt by means of the direct method
of Hirota [9] was unsuccessful. Another attempt [10] was
made to reduce the equation to an approximate equation,
and a solution was found. But it could not be considered
as an approximate solution of the L-L equation with an
easy plane, since it does not satisfy this equation in the
approximation of first order anisotropy, as we have seen
by direct substitution.

No solution to the equation was found by the inverse
scattering transform [11,12]. In addition to complexity
due to the Riemann surface, required by the double-valued
function of the usual spectral parameter, there exist other
difficulties, as we shall mention at the end of this Letter.

The L-L equation for a spin chain with complete
anisotropy has been studied by the method of the Riemann
problem [13,14]. It was reduced to a Riemann boundary
value problem on a torus, and was then studied in
terms of elliptic functions, but the problem became more
complicated. Even though the soliton solutions were

J = diag(0, 0, —16p ) (2)

characterizes the easy plane, the 12-plane. Here p is a
real constant and 16 is introduced for later convenience.
The Lax pair of the equation can be obtained from the
paper of Sklyanin [18] by setting the present 1,
L = —iA53cr3 —t p, (s~o.~ + 52o.2),

M = t2p, S3o3 + t2pA(5)at , + Szoz)

(3)

l p(5253~ 53S2X) crl t p(535]x 5153x) rr2

—i A(5$ 52, —525],) rr3, (4)

where the parameters A and p, satisfy the relation A

p, + 4p . If one of them is taken as an independent
parameter, the other is a double-valued function of it.

In development of the method of the Darboux transfor-
mation matrix, it is reasonable to introduce an auxiliary
parameter k such that

k + I-'
A=2p

k —k
P= PI= 2 (5)

The Lax equations are then written as

B,F(k) = L(k)F(k), ri, F(k) = M(k)F(k) . (6)

found, they are hard to transform to those in the limit of
easy plane, as mentioned by Faddeev and Takhtajan [15].

Therefore exact solutions, as well as approximate
solutions of the first order anisotropy, of the L-L equation
for a spin chain with an easy plane did not appear. In
this Letter, the equation is solved by the method of the
Darboux transformation matrix [16,17]. By introducing a
particular parameter, and constructing Darboux matrices,
we are able to show that the Jost solutions can be
generated and the Lax equations are satisfied, and then
soliton solutions can be obtained. We give an explicit
expression of the 1-soliton solution in terms of elementary
functions of x and t, as an example. A complete paper
will be published separately.

The L-L equation for a spin chain with an easy plane is

S, = S x S„+S x JS, isi = 1,
where the diagonal matrix J
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W(
—k) = W(k),

L(—k) = ~,L(k)~, ,

p, (—k) = —p, (k), (9)

M( —k) = ~,M(k)~1, (10)

Hence we have

Fp( k) = —i o 1Fp(k) .

We shall drop the arguments x and t henceforth, unless
necessary.

Since the 12-plane is the easy plane, the asymptotic
spin must lie on it; we thus see that S = Sp = (1,0, 0)
is the simplest solution of (1). The corresponding Jost
solution of (6) may be chosen as

F (k) U
—iP(x ,2A—t)cry

U = p(1 —i(~1+ ~2 + ~3)) (7)

We define the Jost solutions F1 (k) by the Darboux
matrices D1 (k) such that

Fl(k) = Dl(k)Fp(k),
where Dl (k) has poles, as we shall discuss. The proper-
ties of Dl (k) and its relation to the solution S of (1) will
be determined later [see (25)].

It is obvious that

can be expressed in terms of y~ and 6~, and then

lkl I'(I yl I' +
I ~i I') —'

(yi ~ 1)

6]—kl(kl —ki)Y'1~1 (Vi ~i),
'y1

where

= Ik I'(ly I' + l~ I')' —Ik

(19)

To determine pi and 61, we substitute (8) into (6) and

(7) with suitable subscripts, and taking the limit k ~ kl
we obtain

8 (C1B1Fp(kl)1 = Li( ki) C1BiF p( ki), (21)

B,(C1B1Fp(ki)1 = Ml (kl) Cl B1 Fp(k1) . (22)

Owing to the degeneracy of B&, the second factor of the
right-hand sides, (yl 61)Fp(kl) must appear in the left-
hand sides in its original form, and hence it is independent
of x and t. We simply obtain

(71 ~1) = (bl 1)Fll (kl), (23)

F1(—k) = —io-1 F1(k), Dl (—k) = crlD1(k)o. i .

(12)

where b] is a constant. Hence the Darboux matrices
Dl (k) have been determined, except Cl.

In the limit of k ~ 1, we have from (3)

Hence we have

F, '(k) = F, (k), Dl '(k) = Dl (k) = Bl (k)Cl .

(16)

From (13) and (16) we have

(17)

Since Dl(k)Dl (k) = Dl (k)Dl(k) = I, in the limit
k ~ k~, we have

Suppose kl is a simple pole of Dl(k), —kl is also a
pole of Dl (k), as seen from (12). When D1 (k) has only
these two simple poles we have

Dl (k) = Cl Bl(k),

ki —ki —ki + ki-
Bl(k) = 1 + Bl + Bl, (14)

k —k) k+k,
where C~, B~, and B~ are 2 X 2 matrices independent of
k, and (kl —kl)C1B1 and (—kl + kl)C1B1 are residues
at k~ and —k~, respectively.

From (3), (4), and (7) we can see that

I.(k) = —I.'(k), M(k) = —M'(k),

F, '(k) = F, (k). (15)

A(k),
1

p, (k) 2p + O(1), (24)

CiCi = I.t

(17) and (26) show that the matrix Cl is diagonal and

(Cl)11 (Cl)22 l(C1)ll I

= I .

Hence one can write

i (1/2) Cu 1 a 3
~

—e

(26)

(27)

(28)

where ~~ is real and characterizes the rotation angle of
spin in the 12-plane. It should be mentioned that ~& may
be dependent on x and t. To determine co~, one must
examine the Lax equations carefully. Since e'~' "' -' is
a rotation around the 3-axis, it does not affect the value of
S3. Substituting (8) into (6), and taking the limits k ~ ~
and k ~ 0, respectively, we obtain

and then from (21) we obtain

(Sl . ~) = Dl(I)~1D1(1).
In the limit k ~ —1, we obtain formulas equivalent to
(24) and (25) with different forms.

From (16) we have

t —ki + k]-t
B] I —Bi+ Bi = O.

2k'
(18)

B,(C,) = —i2p(S, ) o- (Cl),
il (C1B1(0))= i2p(S1)3o.3(C1B1(0)j.

(29)

(30)
This manifests degeneracy of B&. Hence one can write
Bl = (al pl) (yl 61), and then the expression of Bl
according to (17). Substituting then into (18), n 1 and pl

Comparison of these two equations gives

B,(0) = C (31)
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From (14) and (19), we obtain

~n&kil~tl' + k&ly&l'C

Hence the expression of co~ is

0
kilyil' + kil~tl')

(32)

—~~ = arctan —,
kI lyil' + l~tl' '

where the superscripts ' and " denote the real and
imaginary parts of a constant, respectively.

We have

where

y~ = ft + &fi ~~ = ft —&fi

2 —Ol i+i
&

—e e

2pIx 2(piAt pt/tI )r + 4]p,
Ot = 2p I (x V tr xt),

/

y p/ + +~ p//
] // 1.

p&

Substituting these formulas into (25), we obtain

(34)

(35)
(36)
(37)

(38)

(5'i)z =

4kI" /I 1 —kt I' + (kI /kI ) sin C'I

cosh 0't + (kI' /kI ) sin

2(4kI' /ll —kt l ) sinh8~ cosset —2(kI /kI) (1 —lkt! )/(!1 —kt l ) coshO't sinC&~

cosh 0'i + (kI' /kI ) s&n C&i

(39)

(40)

2[2kI'(I —lktl )/!1 —kt l ]cosh8q cos&Pt + 2[2kI' (1 + lkq ! )/kI!1 —
kq l ] sinh8q sin4q

(5'i)3 =
cosh 8~ + (k& /kt ) sin2 //2 /2 2

(41)

!
These are the expressions of the 1-soliton solution for a
spin chain with an easy plane.

It is reasonable to write them explicitly dependent on

p. It is convenient to introduce an auxiliary parameter g
such that ldll ~ p; (44)

One can then express the expression of the 1-soliton
solution in terms of the parameter g. We restrict g~ to the

upper half plane of complex g, and

~=C+p'C'.
Comparing with (4) and (5), we have

(42)
then from (43) we find

(43)
P

It is obvious that g = ~p correspond to zero p, and to
A = ~2p. In the complex A plane, these two points are
the edges of cuts.

k, 2p —p

lgil' —p'
i&i

—pl' ' (45)

where e = ~1 correspond to k~ ) 0 and k~ ( 0, respec-
tively. (39)—(41) become

(St)i = 1 —2 '&i" /!&i l' + [4p'Ci" /(i&I' —p')']sin' +i
cosh 0'& + [4p s'" /(ls/~lz —p2)2]sin2 Qt

2(g,
"

/lgtl ) sinhO~ cos4t —2[/&gt (lg&l + p )/!/~! (lgtl —p )]cosh8~ sin4t
cosh 0'~ + [4p g /(!/~i —p ) ] sin

2(g~g~ /lgt! ) coshO'~ cos4~ + 2[/~' (lgt! + p )/!/~i (!/~ i
—pz)] sinhQ'& sin4t

(5) =
cosh 8i + [4p'Ci /(1&ii' —p')']»n @i2

(46)

(47)

(48)

which have never been found by any means tried.
These expressions depend essentially on two parameters,
namely, the two velocities in (36) and (37), which
describe a spin configuration deviating from homogeneous
magnetization. The center of inhomogeneity moves with
a constant velocity, while the shape of the soliton (the
direction of magnetization in its center) also changes with
another velocity. They cannot be obviously factorized

!

in the form of separated variables even in moving
coordinates. Hence, it is hopeless to solve the L-L
equation for a spin chain with an easy plane by means of
separating variables. Moreover, these properties remain
even in the approximation of order of p; all attempts
tried in this approximation were not successful. It is
obvious that when p ~ 0 these three expressions recover
those for the isotropic chain.
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indicates that in the inverse transform the edges of cuts
must give a contribution even in the reflectionless case.
Unfortunately, Bolovik and Kulinich [12] have apparently
not considered these effects. It is natural that they do not
obtain any expression for the solution.

The project is supported by the National Natural Sci-
ence Foundation of China and the Chinese National Fund
for Nonlinear Science Research. Valuable suggestions by
Professor C. H. Gu and Professor F. K. Pu are gratefully
acknowledged.

FIG. 1. cosg(x, t): the lowest t = (0.082) '(I/4)m, the mid-
dle t = (0.082) '(1/8)7r, the highest t = 0.

To show the particular feature of the solution, setting

p = 0.112, gt = 0.1, and gt' = 0.2, in the moving coor-
dinates of the soliton, we have

where

0.8 + 1.43 sin
cosO = 1 —2

cosh Ot + 1.43sin24t ' (49)

0't = 0.5x, 4
&

——0.15x + 0.082t. (50)

For (a) t = 0, (b) t = (0.082) 's~, and (c) t =
(0.082) '47r, we include Fig. 1.

Noting also that (49) has the property

cosO( —x, t) = coso(—x, t), (51)

we see that the depths and widths vary periodically with
time and the shapes are not symmetrical with respect
to the centers. This feature did not appear in soliton
solutions of all other nonlinear equations solved.

On the other hand, s' = ~p correspond to k = ~ and
k = 0. In the above discussion, we have seen that they
contribute to the determination of the factor Ct in (13).
This factor is important to ensure that the Jost solution
generated satisfies the corresponding Lax equations. This
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