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Microscopic Description of the Vortex State near the Upper Critical Field
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We solve the BCS-Gor'kov equations for a pure, isotropic type-II superconductor near the upper
critical field. Corrections to the semiclassical results lower the value of the upper critical field and
cause H, 2(T) to vanish quadratically near T, This. form leads to positive curvature in the critical field,
which has been seen in a range of materials, and means that a type-II superconductor will convert to
type I at a temperature close to T, .
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The variational approach to this problem is defined by

H' = crt crt Hp(r) p (r) crt
0'( ) -H.*( )

@(r) = VpB(c,tc—,t).
The equations for the eigenfunctions of the matrix appear-
ing in (2) are the Bogoliubov —de Gennes equations [4].
The BCS theory [5] is recovered when A = 0 and p(r)
is constant: a plane wave basis reduces the matrix to un-
coupled 2 X 2 matrices mixing ck and c k, and the self-
consistency equation (3) to the BCS gap equation.

Because the magnetic field is uniform near H, 2, Landau
levels are a better basis than plane waves. If the ground
state has the form of a periodic vortex lattice, degenerate
states within a Landau level are combined into eigenstates
which conserve momentum with respect to that lattice.
The equation which determines the upper critical field
was derived from the Gor'kov equations in Ref. [6]. An

PACS numbers: 74.60.—w, 74.25.Jb

In 1959, Gor'kov derived an expression for the upper
critical field of type-II superconductors at low temperature
using his Green s function description of superconductivity
and a semiclassical phase approximation [1]. Subsequent
extensions to higher temperature and to theories including
the effects of spin and impurities are the basis of the
semiclassical theory of the phase transition [2,3]. In this
Letter, we show that solving the BCS-Gor'kov theory near
H, 2 directly, by generalizing pairing between plane waves
to pairing between many electronic Landau levels, can lead
to significant deviations from the semiclassical results.

The starting point is the Hamiltonian proposed by
Gor'kov, based on an interaction between electrons which
is short range and attractive in a narrow energy range
around the Fermi energy:

alternative formulation using this basis shows why the
divergences found there (H, 2 ~ ~ as T ~ 0) do not
occur and illustrates some further points. The basis is
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h„(x) = (—1)"Qvr 2" n!) e e . (8)dx~

At, (u, v) = (27r)' g e "'ht[42qr (s + v)], (9)
S

orthonormal on the unit cell 0 ( u, v ~ 1. The phase of
these functions winds by 2~ about each of a square lattice

1 . 1of points (u, v) = (z + j, 2 + k). Ap is the Abrikosov
form for the order parameter [8], and the higher k
functions can be expressed in terms of its derivatives.
What makes these functions useful is that the momentum
and position dependence of the pair product separate:

P C"„Ak(r/b)A +„ t, (qb/qr),2AP „(r)i/ „(r)=

The cpp 's are the quasiparticle operators that diagonalize
the Hamiltonian; p = (k„q), where hk, is the ordinary
z momentum and q = (q„qy) are wave vectors defined
with respect to the vortex lattice; ct creates an electron
in the nth Landau level with the periodicity of a square
vortex lattice of side b = lH ~sr [7]; tit„p (r) is this
magnetic Bloch state in the gauge A = Hy x; s runs
over all integers; and the Hermite functions h„(x) are
normalized harmonic oscillator eigenstates.

In the BCS case the order parameter is a constant. In
the vortex state the order parameter can be expanded in
terms of "vortex lattice Hermite functions, "
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where the combinatorial factors C"„are [9]

[2 +" m! n! k! (m + n —k)i]
(-1)'

(m + n —k —s)! (k + s —n)! (n —s)!s! '

and this simplifies the gap equation and matrix elements.
The pairing amplitudes in the Landau level basis are the

eigenvectors of a large matrix that generalizes the 2 X 2
matrix in the BCS theory:

g is the BCS coupling constant,

g = VpAmkF/2' = VpN(EF),

and the functions gI, (H) are given by

(21)
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where the pairing matrix element is
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in terms of the order parameter components

1

~2 0Acct'
dr AI, (r/b)@(r). (14)

The bare energies in Eq. (12) are Landau levels

The upper critical field for the vortex state is defined by
the largest Hj„which occurs for k = 0.

The points E = E„=0 do not contribute to a diver-
gence because the perturbative expansion (18) does not

apply there. Diagonalizing these levels exactly shows
that they lead to tails of persisting superconductivity just
above H, 2 whose effects vanish in the limit EF » hcuH
that applies to conventional superconductors.

In the limit of many paired N„and filled Ny Landau
levels,

E „(k,) = 6 „E„"(k,)

E„(k,) = [(n + 1/2)hmH + h k, /2m —Ep], (15)

with con = eH/mc and the restriction

EF
Ny =

RMH

(C~+,~,) = e ' ~ jv'7rN,

we can use the asymptotic form

(23)

(24)
[E'(k, )~ ( E„, ~E„'(k,)~ ( E„, (16) and write the equation for H, z, Eq. (20) with k = 0, as

pairing only those levels within a cutoff energy Ep of the
energy available for motion perpendicular to the field.

Near the phase transition, when @(r) is small, the
matrix of expectation values,

F dkz

kF

V, min(x, 1,—x) 2 e
dX dY

p 'Ir x
(25)

F .(p) = (c ptc-, -pt) = HmpV p (17)

' dk,' [ln(2I, ) + C/2 + O(1/I, )],
P kF

I, —= N„/QNy(1 —k, /k ),
can be calculated using perturbation theory

F .(p) = — „,e(E E.) + o(@ ), (18)

~ H & Hg, (19)

where HI, is defined through

gk(Hk) = g, (20)

where e(x) = 1 for x ~ 0 and 0 for x ( 0. Equa-
tions (6), (10), (13), and (18), together with the orthog-
onality of the A&'s, yield for the self-consistency equation
(3) one gap equation for each component Pk ..

where C is the Euler constant =0.577, and we have
assumed small E„/EF. Doing the k, integral, we obtain

O(QNy /Np):

g = In[aN&/QNy], a = e'+ (27)

The BCS zero-field gap equation has a sum over 1/E
similar to Eq. (22) which yields 1/g = In[2E„/Ao] for
small Ap. This has a solution for arbitrarily weak
coupling, the BCS instability. Using the definitions for
Np and Ny shows that in the vortex state this has been
replaced by ln[nE„/~H ], with n2 = 2a2&&o/7r Fi vF
and 4&o the fiux quantum hc/2e. The magnetic field cuts
off the BCS instability and creates a minimum coupling
strength, Eq. (19), which defines the upper critical field.
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(28)

PEp

Using the BCS weak-coupling values,
2E exp[ —1/g] and gp = Ave/~Ap, and the solu-P

0tion to Eq. (27) as H = H, 2 yields
a2

so so
The semiclassical result is H, 2

= 1.26~2 KpH [1,2],
where ~0 is the Ginzburg-Landau parameter at T„
Kp = 0.958At /so, H, is the thermodynamic critical field
2[7rN(EF)]' Ap, and AL, is the London penetration depth
[mc /47rpe ]'t . These yield H, z = 0.212(@o/go).

The quantum and semiclassical results for H, 2 agree
with O(QNt /N„), that correction coming from the

O(1/I, ) term in Eq. (26). It follows from (27) that the
size of this correction is O(e '«). This indicates a much
greater sensitivity to the cutoff of the pairing potential
than is usually present in BCS, where strong-coupling
corrections derived from the Eliashberg equations are the
square of this: O(T, /E„) . Doing the integrals numeri-
cally shows that, for typical values g = 0.2 —0.4, H, (z0)

is decreased relative to the value (28) by 2%—23%, as
shown in Fig. 1.

To estimate the sensitivity of this effect to impurities,
we broaden the bare energies by an amount ih/r Re-.
peating the steps that led to Eq. (25) gives ln(H, z/H, 2) =
O(QNf/N~) + O((AH r) '/QNt ). The factor I/QNt in
the second term shows that scattering becomes impor-
tant not when AH~ —1 but when the mean free path
vF ~ —lH. This is the standard semiclassical criterion for
the clean limit.

Experimental results are usually expressed in terms
of the slope of H, 2(T) at T, The tempe. rature depen-
dence of H, 2 is given by replacing 0(E E„)/~E" + E„~
in Eq. (22) with [tanh(pEo/2) + tanh(pEp/2)]/2(Eo +
E„). This yields

1 F dk~ ~ I' du
dv

g O ~F O & O

2 2

e ~'= 2 sinhu
X 0(PE„—u —v)

~sr e, coshu + coshv

e, = p TtcuHEF(1 —k, /kF). (29)

When H = 0 this is the BCS equation for T, . For any H,
Eq. (29) can be expressed in terms of the dimensionless
variables

h —= H/H, z, t —= T/T,

and constants which depend only on g. Expanding the
integrals near T, then yields, to first order in e

0 = 1.6le-'«VX + 0.727h —~t, (30)

0.8

&ex 0.6

H,', 0.4

0.2 0.4 0,6 0.8

where 6t = 1 —t. In the limit g ~ 0, the semiclassical
result h" (0) =—1/(dh/dt), =t = —0.727 is recovered. For
g 4 0, however, the presence of the ~h term causes
H, 2(T) to vanish quadratically near T„not linearly, as
in the semiclassical theory. These results are illustrated
in Fig. 2.

In practice, this means that near T, the slope of the
upper critical field decreases until H, q falls below H„
at which point the material becomes type I and the
field being measured is the thermodynamical critical field.
This would be manifested as a small upturn in the upper
critical field near T, . Such upturns were first seen weakly
in older experiments on single-crystal vanadium [11],
then more clearly on the A15 compounds [12,13]. The
upturn is most evident for the cleaner Nb3Sn samples and
present, but significantly less, in the clean V3Si sample
of Ref. [13]. Since the degree to which the upturn is
present depends on T, /E„, such a difference would be
expected from the similar T, 's but lower Debye energy

E E

H, 2 (kG)

c2
0 0.8—
C2

0.7—

0.6
0 0.1 0.2 0.3 0.4 0.5 0.6

0.8 0.9

FIG. 1. H, q(T = 0) relative to the semiclassical result as a
function of BCS coupling constant.

FIG. 2. H, 2(T): (a) relative to the T = 0 semiclassical value
for g = 0.2, 0.3, 0.4 (top, middle, lower lines), and (b) near T,
for g = 0.3, fit to H, 2

= 320kG . Points and dashed line are
data and fit by semiclassical theory for Nb&Sn from Ref. [13].
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for Nb3Sn. An upturn near T, has also been seen in the
Chevrel material Mo6Ses [14].

Inhomogeneities have been offered as an explanation
for such upturns. However, the curvature increases as the
materials get cleaner, as measured by normal-state resis-
tivity. Fermi surface anisotropy is also a problematic ex-
planation: it seems to be too small to explain the upturns
in the A15's [12,15]. The presence of a small intrinsic ~h
term appears to be a more natural explanation. Measur-
ing the inhomogeneity in H, 2 across the material would
be an important test in establishing this. The most direct
test would be observing a transition from a type-II to a
type-I superconductor, as might be seen by magnetization
measurements or the presence of hysteresis.

Previous discussions of the upper critical field have fo-
cused on larger measured values of h*(0) than predicted
by the semiclassical theory [11—17]. In the A15 com-
pounds [13] and Chevrel materials [14,16], the critical
fields can get large enough that Pauli paramagnetic lim-
iting becomes important. In these cases an absence of
such limiting was found (more pronounced in Nb3Sn than
V3Si), which is difficult to explain within the context of
the semiclassical theory [15]. A decreasing slope near T, ,

however, raises h" (0). A model including the effects of
Pauli limiting, impurity scattering, and a realistic phonon
propagator as well as a better understanding of the resis-
tive transition and more data near T, will be important for
a more quantitative comparison.

Experiments on heavy fermion superconductors also
indicate a positive curvature near T, [18], however, it
is less likely that the conventional s-wave BCS-Gor'kov
model applies to those materials or the high-T, materials,
where the effects of strong anisotropy may be important.

Away from H, 2, the density of states of the Hamiltonian
[Eq. (12)] has a characteristic form. In the normal state,
the spectrum is Hat in the narrow energy range relevant
for superconductivity. When the pairing is turned on, off-
diagonal matrix elements cause the eigenvalues of this
large matrix to repel, and the effect is to turn the Oat density
of states into a dimple around the Fermi energy. The depth
of this dimple is related to the size of the matrix and the
strength of the order parameter. In numerical simulations
with parameters close to those of typical materials, we
find that such a dimple develops and deepens gradually
as the magnetic field decreases away from H, ~. This
gapless form should hold down to H, i. The presence of
such excitations is indicated by the persistence of magnetic
oscillations [19] and by scanning tunneling microscopy
measurements at fields well below H, 2 and positions
midway between what are ordinarily considered vortex
cores [20]. This suggests that it would be interesting to
reexamine the fully self-consistent solution for an isolated
vortex.
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