
VOLUME 75, NUMBER 1 PH YS ICAL REVIEW LETTERS 3 JUrv 1995

Vortex Dynamics in Disordered Type-II Superconductors
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A field theoretical method is developed which permits us to study the dynamics of vortices in
disordered environments. In particular, we obtain a self-consistent system of equations for disorder
averaged quantities. Making use of a Hartree-type approximation, we calculate the current-voltage
(I V) char-acteristics in the flux liow regime. In order to probe incipient melting of the vortex lattice
we propose an experiment where interference steps in the I-V characteristics are observed, which arise
when a small ac field is superimposed on the constant voltage.

PACS numbers: 74.60.Ge

Superconductors of type II allow the magnetic field to
enter in quantized units of magnetic flux. Commonly,
one refers to the state with vortex lines present as the
Shubnikov phase, and in this phase with an applied
transport current, an electric field may appear when the
vortices are moving.

In an ideal situation, the vortices are ordered in the
form of a lattice. Material inhomogeneities (static dis-
order [1]) tend to prevent the free displacement of
the vortices. On the other hand, there are also ther-
mal IIuctuations (dynamic disorder) which enhance the
vortex motion. Thermal fluctuations are expected to
play an important role in high-temperature superconduc-
tors [2].

It is appropriate to distinguish two regimes for the
current carrying Shubnikov phase depending on whether
the vortices are essentially at rest or in motion. The first
case is of interest with regard to applications, whereas in
the second case, intrinsic properties of the vortices and
their dynamics will dominate the physics. In order to
support the above classification, we wish to draw attention
to a recent experiment [3] where by the help of neutron
scattering the two regimes can be observed.

The theoretical analysis of these problems was mainly
done considering static situations [4] or using perturbation
theory for small fiuctuations [5]. In the field of research
on disordered systems, the techniques used for analyzing
problems are the replica method [4] and supersymmetry
[6]. These remove the so-called denominator problem
in the partition function (generating functional) when the
average over the disorder is taken. If one has to consider
dynamical and interacting systems, the methods referred
to above do not seem to work well.

In this context, we recall a real-time method based
on the formalism of Martin, Siggia, and Rose (MSR)
[7,8] that permits the calculation of averaged dynamical
quantities. It was applied by several authors, e.g. , in the
fields of manifolds in random media [9], polymer melts
[10], charge density waves [11], and vortices in type-II
superconductors [12].

We present here a reformulation of the MSR theory,
which is based on the work of Cornwall, Jackiw, and

Tomboulis (CJT) [13,14] and which leads to a self-
consistent procedure that comprises an expansion not only
about the true values of the averaged fields, but also about
the true values of the correlation and response functions.
The main point of this method is a Legendre transform
which yields the velocity as an independent variable
instead of the force. We think that this choice is more
suitable to describe the situation of an Abrikosov lattice
moving in the flux-flow regime. On the other hand, using
a rather direct Hartree approximation [9], it was shown
that in the static limit ergodicity can be broken and aging
effects may occur.

We apply the CJT method to analyze the dissipation
due to the motion of vortices in a disordered super-
conductor. Twenty years ago this problem was consid-
ered by one of us (A. S.) [15] as well as by Larkin and
Ovchinnikov [16] in connection with interference steps
discovered by Fiory [17,18] in his experiments. With the
formalism presented below, the influence both of disorder
and of thermal noise on the vortex motion can be calcu-
lated in a systematic way. As the high-T, superconduc-
tors are built of layers, there is a fundamental interest in
the behavior of two-dimensional systems. In addition, the
above mentioned steps are more pronounced if supercon-
ducting films are observed. Therefore, as a starting point,
we restricted ourselves to the analysis of thin supercon-
ducting layers neglecting the vortex tilt.

Let us now consider the classical equation of motion
for a two-dimensional system of interacting particles [i)
[position r (t), mass m, harmonic interaction potential
Vjr'r~/2] moving dissipatively (viscosity g) in a random
potential U(r) and driven by a force f(t) as well as by
Langevin forces g'(t). For the rest of the Letter we shall
use the following conventions: time arguments will be
written as index (e.g. , rt), thermal averages are denoted
by ( )T, and (.)U means the average with respect to the
random potential, which is taken to be Gaussian. Thus,
we have

R idt'I 'r', , := mt", + rir ', + V;~rt'
J

= f, —7'U(r', ) + gI,
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with according mean values and correlations (U(r))U = 0
and (U(r)U(r'))U = I U(r —r') for disorder averages

and (g,')T = 0 as well as (g'tg, )T = 2rik~T6'JB« for
thermal averages.

The probability for a given path of the particles can
be expressed by the functional 6 function, so that the
generating functional for the response and correlation
functions is given by

= —
q

—Q ~ r,
l

2

For the effective action I one can write

I ([r],[0]) = S([t]) ——Tr ln Q% + —Tr
i i 62S([r])
2 2

(8)

(9)

Z([f,'] I JI]) = [rl]D[Rl]J ——'Tr][ + r, ([r],[@]).
2

(10)

Z([q]) = J icf ~ Y is([x])

S([&]) = (1/2)& ~ 3 ~ &

—(i/2)R„~ B~B'I'U(r —r') ~ R', , (3)

where we have introduced the symbols t = (R, r), q =
(f, J), and the matrix

f 2igk, T I')
IA p )

(4)

"~" now includes an additional summation over the
matrix indices introduced above. Note the structural
similarity between this matrix and the inverse of a
propagator in the Keldysh formalism [20].

In order to exploit the field theoretical formalism
of Cornwall, Jackiw, and Tomboulis (CJT) [13] we
proceed by adding a quadratic source term (i/2)r ~

At ~ t to the exponent in (3). Taking the Legendre
transform of the generating functional, that is, of the
vacuum diagrams W([q]), [Q]) = —i lnZ, we arrive at
a set of equations which form the starting point of
the CJT formalism (r means the averaged position and

represents the connected correlation and response
functions of the particles):

6W
6q

68' 1

2
= —(r e r + i%),

BW BW 1 r%+i
Bq

' 6Q 2
1

I ([r],[%]) = W([q], [0]) —q ~ r ——r ~ Q ~ r

1——Tr@ ~ 0;
2

iR ~ [l ~ r+ f+(—VU(r)] ir ~ J (2)e e

where, e.g. , r ~ q is meant to represent g; g X

f dt rt 'q, ' Si.nce we have deliberately included the
mass m of the particles, the Jacobian J = )6g/Br~ is a
constant [19] and may thus be omitted.

The above formulation, which is in essence the MSR
theory, allows one to perform the disorder and thermal
averages immediately. After that, one can write the fol-
lowing compact expression for the generating functional
Z:

It has been proven by CJT to all orders that I 2 can be
represented as

12([r],[%]) = i ln— —,

' t.@-'~ 1+is;„,([1],[t])

where S;„, means an expansion of S(r + t ) about r
beginning from the third-order term in r, and "2PI"
indicates that only two-particle irreducible vacuum graphs
in a theory with propagators given by % and vertices
determined by 5;,t are retained.

Note that Eq. (9) implies the Dyson equation

6I 2=%+ Q —2i
6

=:9+Q —X. (12)

For a demonstration we apply the theory presented
above to the simple system consisting of only one
particle moving in two dimensions subject to a random
potential ("tilted rough surface*') and to Langevin forces.
Specifically, the applied force f, is taken to be constant
in time; as a consequence, the mean particle position
is r = vt. We may add that a constant mean velocity
requires a sufficiently large driving force, so that the
probability for having the particle trapped by a potential
well is negligible. In order to complete the presentation
of the simple model, we assume that the random-potential
correlator (in Fourier space) is of the form I U(k) =
I U(0) exp( —k s ).

Thus, in the overdamped limit the physical scales are
determined by the disorder strength I U(0), the viscosity

as well as by the correlation length g. The self-
consistent system of equations in this case reads
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If we set Q = 0 and q = (f, 0), which is the physical
situation, the above Dyson equation together with the
equation of motion (8) constitutes an exact self-consistent
solution of the problem in consideration.

For further progress we resort to a Hartree-type approx-
imation, which means that in (11) the factor exp(iS;„,) is
replaced by 1 + iS;„t. This allows us to perform the path
integral exactly, because only Gaussian integrals have to
be evaluated. In physical situations, R = 0, and (8 has
Keldysh structure, i.e.,

( p gA)
(13)
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(m~ + i')(co + iO) —Xt (mo) + irt)(cu + iO) —X,L
g = g g"(X —2i rjk8TIl),

gR d k K K

I (k)I e ke'k"e 'k(~-~')kkg'k,
4~~

d k ~ ~ K K

(I )I N I ikut ik—(g„g,~)k-

4m2

yR 5R 5R

2

, r, (I )k ik(g—() —g,")kkgRk

(14)
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FIG. 1. Pinning force fp(U;T) for a single particle [dimen-
sionless units, i.e., il = 1, s = 1, I U(0) = 1].
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The last line represents the pinning force defined as

fp .= f —rjv. Note that we have f ~~ v by symmetry.
The indices "L" and "T" denote the longitudinal and
transverse parts of the self-energy X„and we have used
(a b)~":= ai'b".

We have solved these equations numerically by itera-
tion, i.e., starting by rather arbitrary given self-energies
and performing then repeatedly the above steps. For
the velocity gtj ~ I U(0)'i /g, the iteration converges
quite rapidly and yields the force-velocity relation shown
in Fig. 1. We have found that a diagonal approxima-
tion of all matrices, e.g. , g —= G Il, leads to nearly the
same curves.

To check the quality of the Hartree-type approxima-
tion, we have examined the energy conservation. If we
multiply the equation of motion (1) by the particle veloc-
ity, average over random potential and thermal forces, and
subtract the unconnected part, we find

Uf p = a&&I:»
—~]')) —((»s))

i 'gGt (i + 2rikiiTGt —ii . (15)
The last line explicitly yields the relation to the correlation
and response functions. Therefore, we can test our
approximation by inserting the corresponding functions
calculated from Eqs. (14) into the conservation relation.
The agreement was found to be extremely good, and we
believe that the relation holds analytically even after the
Hartree-type approximation.

For large velocities, fp and the self-energy X van-
ish —I/v. In this limit, a perturbation theory [15] is
permissible. On the other hand, for smaller velocities
rite ~ I U(0) /$ the fiuctuations grow and finally be-

come larger than the mean velocity. In this regime, the
importance of the self-energy X comes into play.

After this'preparatory discussion of a viscous particle
moving on a rough surface, we will now study the
dynamics of vortex lattices. The equation of motion (1)
for this system can be cast in the form

mr i, + rjri, '+ g Dtt ri, = f, —VU(l + ru) + gli,
l'Wl

(16)
where we have assumed harmonic vortex interactions
[21], and I denotes the equilibrium lattice sites. The dis-
sipation is supposed to originate from a Bardeen-Stephen
mechanism [22]. In terms of electrodynamical quanti-
ties the viscosity is related to the conductivity by g =
Behoof, where .

Pti = 7th/e is the fiux quantum. The
velocity and force are related to voltage and current by
F. = B X v and fr ——j T X @o (Lorentz force). Simi-
lar equations also have been studied numerically [23].
The mass of the vortices is small, and therefore it may
be omitted at the last step of the calculations.

We shall analyze the Aux-flow regime, where for con-
stant Lorentz force f the mean vortex positions are sup-
posed to be I + vt. One can go through the above
sketched steps. In particular, we have done numerical
calculations for small lattices and have been able to con-
firm the energy conservation. The expression used for
the mean vortex position implies that the vortices expe-
rience only small deviations from the equilibrium lattice
positions. This assumption should be reasonable for suf-
ficiently large velocities and is confirmed experimentally
in a recent Letter [3].

Of special interest is a situation where in addition
to the dc electric field one has a small ac voltage
of frequency A [17,18], so that we have ((r)) = v +
wA cos At. In that case, one can find steps in the ld, —
Uq, curves at fields F.„„=(n'/n) (A/27»)$2@oB/3'
This effect is based on the interference of the applied
oscillations with the motion of the periodic vortex lattice.
It is completely analogous to the mechanism responsible
for the occurrence of Shapiro steps [24] in the IU-
characteristics of Josephson junctions. There, a mixing
of modes occurs due to the nonlinear (periodic) relation
of phase and current. For large junctions one finds
interference steps for n'AA = n2eVd, . This relation also
has been pointed out by Martinoli [25], who considered
periodic pinning potentials.

In the case of disorder, the mixing of modes originates
from the nonlinearity of the random pinning potential.
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Thus, one can gain information about the physics of
the vortex lattice. From the width and height of the
interference steps one can infer the shear modulus c66
and the correlation I U(r) of the pinning potential. This
was done by Fiory [17] using the perturbation theory of
Schmid and Hauger [15]. With our method, we may
derive improved expressions that are applicable at lower
velocities.

For 4vrsc66» rlv (po/47rB)'f I U(0)'f /$ one
has distinguishable steps and may approximate the self-
consistent scheme by the first nontrivial iteration. In
addition, we neglect thermal fluctuations and assume the
ac amplitude to be sufficiently small, so that one may
restrict oneself to the consideration of the steps E„t [15];
in an approximation, we take the matrix X from the
dc case.

In order to have measurable effects of first order in ~,
one observes the in-phase resistivity p(E) [17]. Then, the
height of the steps is given by

In summary, we have presented a method that permits
us to study the dynamics of systems subjected to random
potentials and forces. We have combined the formalisms
of MSR and CJT and derived a self-consistent system
of equations for the averaged particle positions and the
correlation and response functions. The advantage of this
combination lies in the fact that it is not only an expansion
about the mean positions, as it would be the case for a
mean field theory, but also one about the full correlation
and response functions. Eventually, we have solved the
self-consistent system of equations in a Hartree type of
approximation. New results have been obtained for a
single particle moving on a rough surface in a viscous
medium and also for a lattice of vortices.

We gratefully acknowledge the helpful assistance of
U. Eckern and H. Glockler. This work was supported by
the Deutsche Forschungsgemeinschaft.

h, =
2 4 23n g~ pf &&zI U(gnaw )wmn ~

32cs6 Bit o
(17)

with w „=m2 + mn + n2 and gi = 27r(2B/~3 X
ttto)'f2. If we expand p(E) linearly near a step voltage
where E = E„& + BE„/2, we may define the half-width
of the steps by BE„=h„/2p'(E„i). Thus,

(BE.) ' =
i/'2

327rc66pfann pm I U(g]wmn )wmn

p2nl @ogl g, I U(g~w „)w
&/2

X (I —~~x „exp(x „)efrc(x „)),
2 22 trg& pf t4a„:= 1 + 2 2 I U(g)m')m',

34oE. i

(18)

Xmn: =
2 2 2
g] wmnPf an

/ 1'2I U(g)m')m' .
3vrgoE„)

S(k, at) = g —itnt+ikl+ikut —ik (Goo —G„). (19)e

consequently, the broadening of the interference steps,
which is governed by the vortex fluctuations, is directly
related to the structure factor. This can be seen, e.g. ,
from Eqs. (14). Therefore the width of the steps can give
indications for the beginning of a melting transition [26—
28] in the vortex lattice.

This result differs from the earlier one [15] by fiuctua-
tion effects which appear here in a systematic way. For
instance, we obtain i(Goo —Gi i, , ) = (([rtt —ri,
((r« —ri, ))]2)) tx Qt —t' for large ~t

—t'( and ~ (t-
t')2 for small time differences, whereas in [15] a linear
time dependence has been considered. In addition, the
contribution of g is not included in the analysis of [15].

Note that the structure function is given by
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