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Berry Phase, Hyperorbits, and the Hofstadter Spectrum
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We develop a semiclassical theory for the dynamics of electrons in a magnetic Bloch band, where
the Berry phase plays an important role. This theory, together with the Boltzmann equation, provides
a framework for studying transport problems in high magnetic fields. We also derive an Onsager-like
formula for the quantization of cyclotron orbits, and we find a connection between the number of orbits
and Hall conductivity. This connection is employed to explain the clustering structure of the Hofstadter
spectrum. The advantage of this theory is its generality and conceptual simplicity.

PACS numbers: 72.10.—d, 72.15.Gd, 73.20.Dx

The theory of semiclassical dynamics of Bloch electrons
in a weak electromagnetic field plays a fundamental role
in our understanding of electronic spectral and transport
properties in metals and semiconductors. The basic ingre-
dients of this theory are the following pair of equations:

i = cj'E„(k)/It Bk, Rk = —eE —er X 8, (1)
where X„(k) is the energy for the nth band, and E and
8 are the electric and magnetic fields [1]. The validity
of these relations depends on the absence of interband
tunneling, therefore (1) holds if the external fields are
sufficiently weak.

A natural question is: How should these semiclassical
equations be modified for a magnetic Bloch band (MBB)?
Such a band is obtained when an electron is subject
simultaneously to a periodic potential and a magnetic field
(not necessarily weak), such that the magnetic flux per
unit cell of the periodic potential (plaquette) is a rational
multiple of the Ilux quantum h/e. For example, in a tight
binding model Hofstadter showed that a Bloch band is
broken into q subbands if the rational number is p/q [2].
At the opposite limit, when the magnetic field is much
stronger than the periodic potential, a Landau level is
broadened and split into p subbands [3]. These subbands
at both limits are manifestations of the magnetic Bloch
bands. It is difficult to resolve these MBBs in a naturally
occurring solid. For example, with a lattice constant a =
5 A and a magnetic fieId 8 = 3 T, the value of p/q is of
order 10 4. However, p/q can be a significant fraction
of unity if we use an artificial lattice with a much larger
period. Recent progress along this line has indicated the
emergence of band splitting in some experiments [4].

Our goal is to derive the counterpart equations to Eq. (1)
for a MBB, and use them to explore the dynamics of
electrons under a weak electromagnetic perturbation. To
simplify the discussion, assume the electrons are confined
in a two-dimensional periodic potential, with a magnetic
field perpendicular to it. Because the vector potential for
a constant magnetic field is not periodic, the Hamiltonian
H does not commute with the usual translation operators.
However, we can define magnetic translation operators
T(R) that commute with H [5]. Analogous to the Bloch

states, we require the eigenstates of H to satisfy the
relation T(R)'P„(k) = exp(ik . R)'P„(k). This is not
well defined in general, because the magnetic translation
operators for different displacements, Ri and R2, do
not commute unless there is an integer number of flux
quanta in the area ~Ri X R2~. Therefore, if @ = p/q,
we have to choose a unit cell consisting of q plaquettes.
Correspondingly, the area of the magnetic Brillouin zone
is reduced by a factor of q. Furthermore, because of
the magnetic translation symmetry, the energy spectrum
is exactly q-fold degenerate.

Electric perturbation and transport. —If we write a
magnetic Bloch state in the form 'If„(kp, t) = exp(ikp
r) u„(kp, t), then under a weak and homogeneous electric
field u„(kp, t) can be expanded as (apart from a dynamical
phase factor) [6]

u„(k) (u„(k)iu„(k))
2', (k) —'E„ (k)

where u, (k) is the solution of a Hamiltonian without E,
but with k being replaced by kp —eEt/R The above.
result is obtained by adiabatic perturbation theory, which
is valid for weak fields. The average velocity in such a
state can be easily evaluated as

r = aE„(k)/oak —k X zn„(k), hk = —eE, (3)

where z is the unit vector along the direction of the
magnetic field. The second term in the expression for r
comes from the first order nonadiabatic correction in the
wave function, with [7]

The equations in Eq. (3) are the new set of semiclas-
sical equations. Notice that the usual Lorentz force term
for k is absent because the magnetic field has already
been included in the band structure. On the other hand,
the velocity has an extra term involving A„(k), which
will be called the "curvature" of the Berry phase, because
its integral over an area bounded by a path C in k space
is the Berry phase F„(C) [8]. In physical terms, A„(k)
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2J„=—EXz— d k
fpA„(k)

d k r3fp ( BX„& BX„
(2')2 BX & Bk ) Bk

(6)
where r(k) is the relaxation time and fp is the unper-
turbed Fermi-Dirac distribution. The first term is new
and is due to the Berry phase curvature, which is nonzero
in general. In fact, in the simple case of a filled band

(fp
= 1), for which the second term is zero, this term

reduces to the topological Chem number discovered by
Thouless et al. [7]. The second term is the usual Boltz-
mann transport formula [1]. It was used for the calcula-
tion of longitudinal conductivity of magnetic bands [9].
Our theory justifies this usage because the Berry phase
term only contributes to the Hall conductivity.

Compared to the brute force, all purpose Kubo formula
approach, the semiclassical dynamics, in conjunction with
the Boltzmann transport theory, offers a simple and
intuitive picture of the behavior of the physical system.
The semiclassical dynamics also provides a useful tool
in problems with spatially varying and/or time dependent
fields, where quantum mechanical calculations are usually

describes the contribution of state qt„(k) to the Hall con-
ductivity in the absence of scattering. The derivation of
Eq. (3) is based on a homogeneous field; nevertheless, it
should still be valid when the field is slowly varying in
space and time. The generalization of Eq. (3) to higher
dimensions is straightfoward. In that case there will be
more than one component of the curvature.

The combination of Eq. (3) with the Boltzmann
equation,

r . Bf/Br + k . Bf/Bk = (Bf/Bt)„(i, (5)
offers a general framework for semiclassical transport
in a MBB. The right-hand side is the collision term
due to impurity scatterings, etc. It has to be cautioned
that the 8oltzmann equation is valid only when the
scattering broadening of a MBB is small compared with
its bandwidth. This does not pose essential difficulty
when p/q is a simple fraction. However, in the more
general situation of a large or infinite q (irrational P), our
approach has to be modified as follows: We divide the
total magnetic field 8 into Bo and 68, where Bo relates
to the band structure not destroyed by disorder, and 68 is
a small perturbation. Then the semiclassical dynamics in
the MBBs of Bp, driven by F and BB [see Eq. (7) below],
will be employed in the Boltzmann equation. In this case,
the scattering broadening is only required to be smaller
than the bandwidth for Bo.

To demonstrate the use of Eq. (3) in transport problems
involving an electric perturbation, we consider a homoge-
neous system in which f depends on k only, and use the
relaxation time approximation. The current to first order
inK is

very involved. A detailed study will appear in a separate
publication [10].

Magnetic perturbation and hyperorbits. —The remain-
ing part of this Letter will focus on how the MBBs for
a given magnetic field 80 are perturbed by adding 68.
In this case, the equations for the semiclassical dynamics
become

8 „(k)
6&k

~k. = —er && Bz.

(7)

This result can be derived, for instance, by considering
a wave packet in a MBB and studying how its center of
mass moves in r space and k space [10]. Notice that the
wave vector k, which is a good quantum number for 80,
is no longer conserved in the presence of BB, even when
both Bo and 68 are uniform.

After r is eliminated by combining both equations in

Eq. (7), the equation for k takes the following form:

~ 8X„/Bk X zBBe/h
1 + A„(k)BBe/h (8)

where A„ is the "vector potential" for the Berry phase that
satisfies V X A„(k) = A„(k)z. Apart from an unimpor-
tant constant, the propagator for a completed closed orbit

It is not difficult to see that k moves along a constant en-

ergy contour in the magnetic band structure. The presence
of A„(k) changes the speed of motion, but it does not alter
the shape of the orbit. The cyclotron orbit in r space can
bederivedfromr = k X z(h/eBB), which showsthatthe
r orbit is simply the k orbit rotated by m/2 and scaled by
the factor R/e BB. Such "hyperorbits" were introduced by
Pippard [11]. We emphasize that the existence of hyper-
orbits is a quantum effect, and cannot be explained clas-
sically. One possible way to detect them is by using an
electron focusing device with a configuration similar to a
mass spectrometer [12]. In order to have a successful ob-
servation, the hyperorbit has to be within the ballistic range
of electron transport.

Analogous to ordinary cyclotron orbits, these hyperor-
bits will drift in an external electric field. By adding a
—eE term to the second equation in Eq. (7), we obtain [1]

r = (6/eBB)k X z + E X z/BB. (9)

The time average of the first term for a closed orbit is
zero, while the second term describes the drifting of the
hyperorbit that results in a Hall current. This will be
used later to calculate the Hall conductivity for magnetic
subbands in the Hofstadter spectrum.

Quantization of hyperorbits —The dynam. ical equation
for k in Eq. (8) can be cast into the Lagrangian formulation

L(k, k) = (kik2 —kzki) —X„(k) + RA„k,e68
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C in period T is given by expI (i/6) fo L dt]. For a semi-
classical orbit, the amplitudes for paths that circle different
times must add constructively. This leads to the follow-
ing quantization rule for the area of a hyperorbit in the nth
MBB [13],

1
(k Xdk) z=2~ m+ ——

2 c 2
I „(C ) e68

2~
(11)

2 +
3 + 0 ~ ~

Its rth order approximation will be written as

p„/q„. At the first order, the Bloch band is broken
into ft subbands; each subband is further fragmented
by an extra magnetic field at the second order, and so
on. As will be shown below, the new semiclassical
dynamics offers a clear and intuitive picture about how
each subband (parent) in the rth order should split into
daughter subbands [15].

Our major findings are summarized below: (a) It is
important to distinguish between "closed" and "open" sub-
bands. They are broadened from hyperorbits of corre-
sponding types. For a square or a triangular lattice, all
daughter subbands, except one in every parent band, are
closed. (b) All of the closed subbands at the rth order
have the same Hall conductivity

o-„= (—1)" 'q„ (14)
If a parent band has only one open daughter band (e.g. , in
the case of a square or a triangular lattice), the Hall conduc-
tivity for this open subband is (—1)" qr r + (—1)"q„.
(c) Because of the difference in the Hall conductivities, a
closed band will break into f„+t subbands at the next order,
while an open band will break into f„+t + 1 subbands.

where m is a non-negative integer, and I „(C ) is the Berry
phase for orbit C [14].

By using the constraint that the area of the outermost or-
bit be smaller than the area of the first magnetic Brillouin
zone of size (27r/a) /q, we found the number of quantized
orbits to be the integer part of I/q6$ + I „(C „)/27r +
1/2, where 6$ = 68a e/h I„(C. „)/2' can be re-
placed by the Hall conductivity o.„(in units of e /h), be-
cause the Berry phase for the orbit C „is very close to
27ro.„. For an integer value of I/q6$, we then have

number of orbits = Il/q6@ + o.„l . (12)
These orbits will be broadened into subbands by interorbit
tunnelings. Therefore, this naive-looking formula relates
the Hall conductivity o.„ofa parent band to the number of
daughter subbands under a perturbation Bttt. It is crucial
in understanding the clustering pattern for the Hofstadter
spectrum.

The Hofstadter spectrum. —Consider a Bloch band
subject to a magnetic Aux that can be expanded as

1
(13)

We briefly describe the derivation for Eq. (14). A
more detailed account will be published elsewhere [10].
The Hall conductivity can be determined by the response
of the corresponding hyperorbit under an electric field.
Using Eq. (9), we know that the drifting velocity of a
closed orbit is (r) = E X z/68. It follows that the Hall
conductivity for a closed subband at the rth order is
rr„= ep„/68„ t, where p„ is the electron density per
unit area and 68„ t

= h6ttt, t/ea . Since the electrons
are equally distributed among the q, subbands at the same
order, p„ is equal to 1/q„ times the electron density of
the original Bloch band. Equation (14) is obtained after
the identity p„/q„—pr r/q, &

= (—1)" '/q, q„ t is
used to evaluate Bttt„&. The Hall conductivity for an
open subband can be figured out by using the sum rule
trparent Z trdaughter [16]~

For a square lattice, the open daughter band is always
located at the center of a parent band; therefore, we know
which subband this a.,z,„belongs to. The Hall conduc-
tivity distribution obtained this way is exactly the same as
that which is obtained by using the Diophantine equation
with some subsidiary constraints [7]. In the semiclassical
picture, 0,&,„differs from o,i„, in general for an open
orbit, because the time average for k in Eq. (9) is not
zero. This is the first time the (seemingly) erratic behav-
ior of the Hall conductivities for the Hofstadter spectrum
is given a clear and direct physical meaning.

We can determine how a parent band is split by 6 @
using Eq. (12). Substituting 6@„=(—I)"/q„+tq„ into
Eq. (12), and taking into account the q, -fold degeneracy
for the rth order magnetic Brillouin zone, we then have
the number of daughter bands for an rth order parent band

, = I(—I)"q,+& + ~, l/q, .

In conjunction with Eq. (14), we obtain 23„= f„+t for
a closed band; similarly 2)„+t = f,+t + 1 for an open
band. Azbel conjectured that there are f„+i daughter sub-
bands for every parent band [17]. It is clear from our cal-
culation that this is correct only for closed parent bands.
An expression similar to Eq. (15) has been obtained by
Wilkinson, but his evaluation of such an expression re-
quired external input for o.„[18].

Various values of @ have been used to check the
predicted splitting of subbands with the actual Hofstadter
spectrum. The results are found to agree very well. One
exception occurs when there is a degeneracy among the
subbands. In this case the individual o„as well as
'D„, cannot be determined uniquely. For example, when

P = 1/4, the central two subbands are degenerate for a
square lattice and the Hall conductivities can be either
(1, 1, —3, 1) or (1, —3, 1, 1) (qo = 1). One of these two
subbands will have this —3 (tT,&,„)when the degeneracy
is lifted by next nearest neighbor coupling [19]. As
expected, we found the subband corresponding to a
hyperorbit that is closer to the nesting energy contour
acquires this 0.QpeQ.
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For a triangular lattice, the nesting open orbit is near
the zone boundary. Therefore, the distribution of Hall
conductivities and band splitting is no longer symmetric
in energy. This explains the asymmetry in the spectrum
generated by numerical calculation [19]. For a lattice
without threefold or fourfold symmetry, more than one
open orbit may exist in a range of energy. In this case,
the total Hall conductivities for open orbits can be figured
out by the sum rule. However, further analysis is required
to get the detailed distribution within them.

In summary, we have demonstrated the new semiclas-
sical dynamics for magnetic Bloch bands and its applica-
tion to a variety of phenomena involving strong magnetic
fields. It can be used to calculate the transport properties,
to obtain the quantization rule for hyperorbits, and to get
the Hall conductivity for a magnetic subband. We also
showed that the complex structure of the Hofstadter spec-
trum can be explained as a logically consistent part of this
theory.

A final comment: The Hofstadter spectrum is usually
generated from the Harper equation, which describes one-
dimensional quasiperiodic systems. It is expected that the
whole discussion of the semiclassical dynamics can be
carried over to those quasiperiodic systems, in which phase
space replaces the role played by k space in this paper.
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