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Critical Behavior of Superfluid 4He in Aerogel
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We report Monte Carlo studies of the critical behavior of superfluid He in the presence of quenched
disorder with long-range fractal correlations. Modeling aerogel as an incipient percolating cluster
in 3D and weakening the bonds at the fractal sites, XY-model simulations demonstrate an increase
in the superfluid density exponent g from 0.67 ~ 0.005 for the pure case to an apparent value of
0.722 ~ 0.005 in the presence of the fractal disorder, provided that the helium correlation length does
not exceed the fractal correlation length.

PACS numbers: 67.40.—w, 61.20.Ja, 64.60.Ak

It is generally believed that the superfiuid transition
(A point) of pure He belongs to the classical 3D XY
model universality class. Near the critical temperature
T„ the superfluid density scales as ~T —T, ~», where g
is measured [1] to be 0.674 ~ 0.003. There has been
considerable interest in studying the superAuid transition
for helium in a variety of porous media [2]. One
such system is Vycor which is a random glass with a
porosity of order 30%. Remarkably, the critical exponent

is found to be unchanged by the seemingly huge
perturbation represented by the glass. This, however,
is the result expected according to the Harris criterion
[3,4], which shows that weak, uncorrelated randomness
is irrelevant at the unperturbed critical point, provided
that the specific heat exponent is negative. The exponent
[1] n = —0.026 ~ 0.004 is indeed negative for He;
however, Narayan and Fisher [5] have argued that since
n is only slightly negative the crossover to the pure 3D
XY critical regime is almost logarithmically slow. Until
recently Vycor was the only porous medium in which

was observed to be unchanged. New experiments,
however, appear to have added a second material, porous
gold (which also has short-range correlations), to the
list [6].

Aerogel is a fractal silica "dust" with porosities of 95—
98% or higher. Despite the fact that aerogel is almost
entirely empty space, and that it (unlike Vycor) has only
a tiny effect on the critical temperature, the exponent g is
apparently quite distinctly shifted [6—8] to approximately
0.75 —0.81. The analysis of Ref. [8] includes important
corrections to scaling which yield a value of 0.75, which
is independent of pressure and hence is presumably the
most reliable. This shift of the exponent seems to suggest
that the nominally weak aerogel perturbation is relevant
at the 3D XY critical point and aerogel (perhaps) produces
a new universality class. The specific heat data suggest
that either hyperscaling is violated or the amplitude ratio
is exceptionally small [9,10]. In addition to shifting g and

o. , aerogel dramatically changes the topology of the 'He-
He mixture phase diagram [11,12].

It is known that long-range correlations can make
disorder relevant, even when n is negative [13,14].
Weinrib and Halperin [13] have demonstrated this for
the special case of weak, Gaussian distributed disorder
with long-range correlations. Li and Teitel [15] have
looked at a model of nonweak (broadly distributed) but
uncorrelated disorder and find a nonuniversal increase in
the exponent g.

Machta [16] has considered a model of aerogel as a
relatively uniform medium filled with pores on many
different length scales. This model was motivated by
early experiments which saw two transitions, one at
the usual bulk temperature and one at a slightly lower
temperature. Recent improvements in aerogel synthesis
techniques appear, however, to have eliminated the larger
pores and inhomogeneities so that now only a single
transition is observed at a temperature slightly below the
bulk value [6]. Huang and Meng [17] have examined a
mean-field theory in a percolating cluster system.

We have performed extensive Monte Carlo simulations
on the 3D XY model for three cases: (i) no disorder,
(ii) uncorrelated disorder, and (iii) fractal disorder. We
consider lattice sizes up to 243, and use the Wolff
algorithm to minimize the otherwise severe effects of
critical slowing down [18—20]. The model is defined by
compact phase variables (Oj on sites of a simple cubic
lattice and has Hamiltonian [21]

H[e]
T T

cos[0(r) —e(r + 6)], (1)

where 6 is a near-neighbor lattice vector. We measured
the disorder-averaged superfluid density p, (helicity mod-
ulus [21]) using the usual Kubo formula expression [21].
Defining one "sweep" as growing and reorienting a clus-
ter of spins (on the order of the system size when near
the critical point) with the Wolff algorithm, typical runs
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FIG. 1. Universal scaling function G vs the scaling variable
(T —T,)L'i' for the case of uncorrelated disorder. The critical
exponent v is estimated to be 0.667 ~ 0.005. The inset shows
the dimensionless superfluid density p, L/T plotted against
temperature.

involved 5 X 10 warm-up sweeps, and 2 X 105 produc-
tion sweeps, with measurements taken every 200 sweeps.
Results were then averaged over typically 100 disorder
realization s.

A finite-size scaling analysis is crucial to the accurate
determination of the critical temperature and exponents.
The scaling ansatz assumes that p, has the form [15,21]

p, = TL G(L/$) = TL +G[(T —T, )L '], (2)

where A = (2 —n)/v —2. Hence the dimensionless
combination p, L+/T is scale invariant at the critical
point T, . If we assume that hyperscaling holds, then
we have I), = d —2 = 1; otherwise, A is a priori un-
known. In the inset of Fig. 1 we determine the (di-
mensionless) critical temperature T, = 2.156 ~ 0.001 by
plotting p, L/T vs temperature for uncorrelated disor-
der K, ~ = 1 + 6K, ~ BK, g E [—h, A] and 6 ( 1,
of relatively large (but bounded) strength 5 = 0.7. Simi-
lar calculations for the pure disorder-free (5 = 0) case
yield a distinctly larger value T, —= 2.203 ~ 0.001. In
the main part of Fig. 1, (G) is plotted as a function
of the scaling variable (T —T,)L 'i ' with the value
v = 0.667 ~ 0.005 which gives the best data collapse
onto a single universal scaling curve. This is the same
value of v which we obtained for zero disorder and so
is consistent with the Harris criterion and the experi-
mental observation in Vycor that uncorrelated randomness
does not change the universality class [22]. In order to
cross check the above result, we have also measured the
magnetization m and computed the Binder ratio [23,24],
which is automatically scale invariant at the critical point,

U4 = 1 — 3(m2)»„. This allows one to estimate the
(m4)

critical exponent v without assuming a value for A as
was necessary in the case of the superAuid density. We
again found good scaling for the same values of T, and v
obtained from p, .

We turn now to a discussion of fractal disorder. A ma-
terial with fractal dimension Df has a mass that scales
with length like M —LDf. If Df ~ 3 then (real) objects
can never be fractal beyond some finite correlation length
g because otherwise the density would vanish. Static
structure factor measurements [25] indicate that acid-
catalyzed aerogel has fractal dimension Df —2.4—2.5
over a wide range of length scales from —6 A out to
roughly s —600 A. Base-catalyzed aerogel (typically
used in the helium experiments) is believed to have a
somewhat lower fractal dimension and a lower range of
length scales. Various measurements of the "fracton" vi-
brational properties of aerogels, however, place a lo~er
bound on the correlation length for the connectivity that
is at least an order of magnitude larger [26]. The con-
nectivity structure may be important because the closed
vortex loops in the helium are presumably attracted to the
aerogel strands and are thus sensitive to the connectiv-
ity. One of the central mysteries shown up by the ex-
periments is the following. In the critical regime with
reduced temperature t —10 4 the correlation length of
the helium (-0.3 p, m) is expected to approach or exceed
the (estimated) connectivity length scale. Nevertheless
no evidence of a crossover to the uncorrelated disorder
regime is evident in the full-pore experiments [2]. Very
recently however, Crowell et al. [27] have performed ex-
periments in the regime of lower helium densities where
even larger correlation lengths can be obtained. They
found evidence of a possible crossover to the uncorrelated
disorder regime with a lower value of g.

We have considered the possibility that the deformabil-
ity of the tenuous aerogel structure is relevant. On length
scales beyond the fracton correlation length, aerogel acts
to sound waves like a relatively homogeneous system with
a low speed of sound (—100 m/s) despite its very low
mass density, indicating that its compressibility is nearly
10 times that of ordinary glass. Aerogel is known to be
sufficiently flexible that it modifies the collective sound
mode dispersion [8,28]. On scales beyond the fracton
correlation length, it is reasonable to argue that the aero-
gel density fluctuations 84 act as, simple, uncorrelated
local annealed disorder coupling to the magnitude of the
helium order parameter in a Ginzburg-Landau theory with
effective Hamiltonian

(64) + [- —h 64] ~VP~T 2K

+ [~ + g ae]~p~' + [~ + i ac] [p['.
Integrating out 64 for small g, It, k produces only irrele-
vant couplings. For stronger couplings, however, the
system can, in the right circumstances, be driven to a
tricritical point, beyond which the transition is first order.

1329



VOLUME 75, NUMBER 7 PH YS ICAL REVIEW LETTERS 14 AUrUsT 1995

This is precisely what happens in He- He mixtures where
it is a good approximation to treat the He impurities
as annealed disorder [1,27]. This confirms the idea
that deformability of the aerogel should be irrelevant.
However, it may be more physically correct to include the
constraint f d re@ = 0 which would lead to the slow
logarithmic case of Fisher renormalization of the critical
exponents [29). The possibility that this may account for
the peculiar features of the specific heat data should be
looked into in more detail.

We seem to be left only with the possibility of aero-
gel as quenched disorder whose fractal character extends
beyond the lower bound set by the fracton cutoff. A vari-
ety of schemes have been used to model the aerogel struc-
ture [12,16,17,30]. We have chosen a simple percolation
model [30] for the fractal structure (probably more appro-
priate for acid-catalyzed than base-catalyzed aerogel). We
generate a critical percolation backbone on the 3D lattice
by randomly occupying lattice sites with probability p =
p„and generate clusters by connecting near-neighbor oc-
cupied sites. We then remove all but the largest connected
cluster. We selected only fractal realizations with porosity
in a narrow window centered on the median value in order
to reduce the sample-to-sample fluctuations in the disorder
strength. We confirmed that these objects had the known
fractal dimension [30] Df —2.5.

In order to be able to do finite-size scaling, while avoid-
ing the scale dependence of the porosity, a single large
cluster was generated on an Lo = 48 lattice (giving a
porosity of about 95%) and divided into smaller sub-
systems of size L = 8, 12, 16, 24. Simulations were per-
formed for different subsystems with periodic boundary

conditions and averaged over the subsystems and differ-
ent fractal realizations. The XY coupling K was set to
unity everywhere except on the -5% of the bonds which
were elements of the fractal where K was arbitrarily re-
duced to 0.26. The inset of Fig. 2 shows p, L/T vs T,
and appears to give a clear fixed point with T, estimated
to be 2.183 ~ 0.001 which is closer to the pure T, than
for the uncorrelated disorder model, since the porosity of
the fractal is so high. In the main part of Fig. 2, we plot
G vs the scaling variable and find that the (apparent) crit-
ical exponent g increases to 0.722 ~ 0.005. We have
confirmed this result with measurements of the Binder
ratio. Unlike the case of uncorrelated disorder, we ob-
served a slow drift downward of U& with system size at
the previously determined T, . Taking this out by scal-
ing the data by the factor U4(T„O)/U4(T„1/L) yields
essentially perfect data collapse with v = 0.722 ~ 0.007,
as shown in Fig. 3. Assuming that a violation of hyper-
scaling gives an anomalous dimension to the superfluid
density p, ~ L ('+ )G[(T —T,)L'~"], we can place an
approximate upper bound ~0~ ~ 0.06.

It is enlightening to compare the present results to
a model with disorder of lower dimension, namely,
infinitely long columnar defects. Recent work on this
model [31] indicates that v~ = g~ —1 is even larger
than for the present model. This must be the case in order
to satisfy the rigorous lower bound [4] on v, since this
model does truly represent a new universality class, and
not simply a crossover. The superfiuid density measured
parallel to the columns has an even larger exponent (z =
v~~/pg —1.07).
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FIG. 2. Universal scaling function G for the case of 95%
porosity fractal disorder. The critical exponent v is estimated
to be 0.722 ~ 0.005. The inset shows the dimensionless
superlluid density p, L/T plotted against temperature.
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FKJ. 3. Universal scaling curve for the (size-corrected)
Binder ratio for the case of fractal disorder. The choice of
the critical exponent v = 0.722 ~ 0.007 makes the data for
different system sizes collapse onto a single curve and agrees
with the conclusion drawn from analysis of the superfluid
density.
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In conclusion, we have argued that the apparent in-
crease in the superAuid density exponent in aerogel cannot
be due to a true change of universality class but must be
a crossover effect in the regime where the helium corre-
lation length is less than the (apparently large, but neces
sarily finite) correlation length for the disorder. We have
performed Monte Carlo simulations in this regime for a
percolation cluster model of fractal disorder and find an
increase in the effective exponent to g = 0.722 ~ 0.005
which appears to be roughly consistent with experiment.
However, we see no apparent violation of hyperscaling,
and attempts to confirm the unusual behavior of the ex-
perimental specific heat in our model have proved too dif-
ficult computationally at this time.

Fractal media are characterized by a mass exponent, a
fracton connectivity exponent, and possibly other impor-
tant exponents. We have presented here a model study
of one particular type of fractal. Further work would be
useful to investigate the general effect of changing vari-
ous fractal exponents on the effective values of the helium
exponents.
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