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Large-Scale Molecular Dynamics Study of Entangled Hard-Chain Fluids
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Equilibrium molecular dynamics is used to simulate fluids comprised of chains of tangent hard
spheres. Reptation theory predictions of segmental motion are compared with simulation results.
In addition to the usual tube confinement, a second entanglement effect is observed. As the chain
disengages from the tube, persistent interchain contacts cause a plateau in the segment mean-square
displacement and subsequent accelerated diffusion. Associated with the plateau in the mean-square
displacement is a corresponding delay in relaxation of the end-to-end vector as interior chain segments
are extended during disentanglement.

PACS numbers: 61.25.Hq, 61.20.Ja, 66.20.+d

Although knowledge of polymer dynamics in the melt
state has increased dramatically over the past two decades,
detailed information on the molecular motions responsible
for observed dynamical behavior is still lacking. In partic-
ular, the physical mechanisms responsible for the molecu-
lar weight dependence of shear viscosity in the entangled
regime are not completely understood because of the fol-
lowing: (1) experiments which access appropriate time and
length scales are difficult, and (2) computer simulations
that could illuminate these mechanisms have only recently
become tractable. We present results from the most ex-
tensive computer simulation study to date concerning the
dynamics of entangled polymers. By applying efficient al-
gorithms to the simplest model of polymer molecules (the
hard-chain model) we have explored large spatial dimen-
sions (192-mers) and long time domains (10'" steps). Our
results provide new insights regarding the effects of entan-
glements on polymer diffusion in the long-time limit.

Relative to simple Newtonian liquids, entangled poly-
mer melts contain a rich variety of topological and
excluded-volume interactions which create a spectrum of
relaxation times. Polymer dynamics are most often dis-
cussed in terms of two models: (1) Rouse [1] dynamics
for short unentangled chains, and (2) reptation [2] dynam-
ics for highly entangled chains. In the Rouse model, the
fluid surrounding a chain relaxes rapidly, providing a sto-
chastic background for a chain's motion. In the reptation
model, the surrounding quid relaxes on an infinite time
scale, thus presenting fixed obstacles to a chain's motion.

The tube model of Doi and Edwards [3] is perhaps the
most prominent implementation of the reptation concept.
In this approach, topological interactions are treated as an
effective field of obstacles forming a virtual tube that re-
stricts chain motion. Atomic displacements larger than
the characteristic dimension imposed by this field, the so-
called tube diameter, occur predominantly along the chain
contour. For displacements smaller than the tube diame-
ter, segment motion is restricted only by chain connec-
tivity and should be characterized by Rouse dynamics.
Since the longest relaxation time in the Rouse model is

proportional to the chain length squared (rR —N ), the
tube model predicts that the self-diffusion D and shear
viscosity g of short chains scale with molecular weight as
D —N ' and g —N in agreement with experiments on
short chain melts [4]. When chain length exceeds a crit-
ical value, the so-called "entanglement" length, the tube
model predicts that the molecular weight scaling for self-
diffusion and shear viscosity changes to D —N and

g —N3. For entangled polymers, the experimentally ob-
served molecular weight dependencies are D —N and

g —N . . The discrepancy in viscosity scaling contin-
ues to be a recalcitrant problem for molecular theories of
polymer dynamics.

Computer simulation offers the advantage of being able
to probe the motions of individual molecules, thereby
yielding information on the microscopic origins of mea-
surable quantities such as D and g. The first large-scale
molecular dynamics (MD) simulations of entangled chains
were performed by Kremer and Grest (KG) [5], who ap-
plied the Langevin integration technique to polymer chains
interacting with a Lennard-Jones site-site potential. Al-
though their results for time-average displacements and
internal relaxations agree qualitatively with the predictions
of the reptation model, the full spectrum of time dependen-
cies was not examined due to computational limitations.

Polymer molecules in our study are modeled as chains of
N freely jointed tangent hard spheres (segments), similar
to a pearl necklace. Bond angles between adjacent seg-
ments along the chain can take on any value which does
not produce intramolecular overlap. This simple model in-
corporates both chain connectivity, to represent topological
constraints, and excluded-volume interactions. The hard-
chain simulations are performed using the Rapaport [6] al-
gorithm; the tangency constraint is eliminated by allowing
the bond length to vary continuously between (1 ~ 6)o.,
where 6 is 0.1 for all simulations [7]. The simulation
develops on an event-by-event basis by locating the next
event (segment collision or bond extension) in the system,
advancing the system to that point in time, computing the
event dynamics, and repeating the process. Neighbor lists,
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link lists, and a binary tree for event scheduling [8] yield
(7—15) X 10" events per CPU hour on our cluster of DEC
3000/300 workstations. Simulation lengths ranged from
10 events for the 8-mer Quid to 10' events for the 192-
mer quid; this is about 2 orders of magnitude longer than
any previously reported MD simulation.

Simulations were performed on systems containing 32
chains of length N = 8, 16, 32, 64, 96, 192 at volume frac-
tions, @ = (rr/6)32No/V, .ranging from 0.3 to 0.45. A
cubic simulation cell of volume V was used with normal
periodic boundary conditions. Initial configurations were
generated by growing each chain from a random walk
with a bond length of 1 + 6/2. High volume fractions
were attained by beginning with a relaxed configuration
at a lower volume fraction (e.g. , P = 0.3) and increasing
the segment diameter as the simulation proceeded. All
configurations were relaxed by moving the chains at least
one radius of gyration before production runs. Equili-
bration was verified by analyzing chain dimensions, Auid
structure, and Rouse modes. Self-diffusion coefficients
were calculated in the molecular (center-of-mass) refer-
ence frame using

1D* = lim (lr, (tp + i) —r, (tp)~ /o- ),

where t" =—t(ktiT/mo )' and D' =—D/(ksT/
m o.2) '~2o. 2. Uncertainties in D" were estimated by
calculating the standard deviation from two or more
independent runs for all systems except for the 192-mers,
which required single long runs. The uncertainty for
these runs was estimated from the variation in D" at long
times. Although viscosities cannot be calculated easily
in equilibrium MD, the end-to-end vector autocorrelation
function can be calculated and provides a measure of
stress relaxation, and hence, the viscosity [9].

Figure 1 shows the scaling of the reduced self-diffusion
coefficient with chain length along with the results from
KG. We observe a crossover from Rouse behavior (D-
N ', solid line) to entangled behavior (D —N, dashed
line). The critical chain lengths at which crossover occurs
decrease with increasing volume fraction and have values
similar to that found by KG. The diffusion coefficients
from KG for long chains (N ~ 150) are extrapolated
values because chain displacement was insufficient to
determine D' directly. Comparison of our D" values
with those from KG for short chain lengths suggests that
the volume fraction in the KG simulations is slightly less
than 0.45.

The tube model of Doi and Edwards provides scal-
ing predictions for the time dependence of the atomic
mean-square displacement (MSD), defined to be gi(t) =
(~ r; (t) —r; (0) ~ ), where r; (t) is the position of segment i

at time t. At short times, when atomic motion is restricted
only by chain connectivity, the segments follow Rouse
dynamics, that is, g&

—t'~ . Once the atomic displace-
ment exceeds the tube diameter a (t* = r, ), segments ex-
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FIG. 1. Simulation results for the reduced self-diffusion coef-
ficient scaled by chain length N versus chain length for three
volume fractions. Error bars represent one standard deviation.
Data from Kremer and Grest are also shown.

perience Rouse-like relaxation within a virtual tube that
is itself a random walk, thus reducing the time depen-
dence to gi —t'~ . As Rouse relaxation is completed
(t' = rp —N ), overall chain diffusion along the con-
tour of a rigid tube leads to a third regime with g i

—t '~

that lasts until the tube disengagement time ~d. How-
ever, since the tube in a real polymer melt is not rigid,
and instead has a fluctuating contour length [10],tube dis-

(~)
engagement is reduced to rd, which is estimated [9] to

be 'rd = rd[1 —1.3(N, /N)" ],where N, is the entan-

glement length. Thus, for chains 5.5N, in length, 7.d is
(F) .

20% of the nonfIuctuating value rd.
MSD analysis is often confined to the inner chain

segments [5], because inner chain segment motion should
typify the behavior of much longer chains than could be
studied via computer simulation. Figure 2(a) compares
the time dependence of the MSD for the inner 10
segments of the 192-mer quid at P = 0.4 with the MSDs
in the atomic and molecular frames of reference. The
inner segment and atomic MSDs increase with t' at
short times, consistent with Rouse behavior as indicated
by the dashed line labeled 1/2. At approximately t* =
7, = 103, the inner segment MSD begins to deviate from
the atomic MSD, exhibiting a scaling of g~ —t '. A
similar analysis for the 192-mer fluid at @ = 0.45 gives a
scaling of gi —t, in good agreement with the results
of KG and with Monte Carlo studies on long chains
confined to a lattice [11]. The decrease in the scaling
exponent from 0.31 to 0.28 with increasing density is
expected, since tube confinement is more pronounced
at higher densities. The reptation prediction gi —t
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could be attained at meltlike volume fractions (estimated
to be as high as 0.55 for molten polyethylene [12]). The
displacement at the onset of the deviation between the
inner segment MSD and the atomic MSD provides an
estimate of the tube diameter a and the entanglement
time r, . From Fig. 2(a) this deviation occurs at gt(r, ) =
20.9o. , and since g~(r, ) = 2(Ro(N, )) the entanglement
length [5] [N, = 3gt(r, )/b + I] is estimated to be 35.
The persistence length b is calculated from the chain end-
to-end distance and is equal to 1.356o. for P = 0.4. A
similar analysis at @ = 0.45 yields N, = 29.

0.0

FIG. 2. (a) Mean-square displacement for the atomic, molec-
ular, and inner 10 segments for the 192-mer iluid at P = 0.40.
See text for label explanations. (b) Autocorrelation functions
for the orientation (CR) and magnitude (Cq~) of the end-to-end
vector. Insets expand the plateau region and give error bars
estimated by averaging over different chains.

The third scaling regime predicted by the tube model

(g~ —t ~ ) should occur when the internal Rouse modes&/2

of the chain have completely relaxed, t ~ ~z. An
estimate of rp can be obtained from the relation [13]
rg/r, = (N/N, ), which gives rR = 10 . In addition,
the MSD at t' = 7.g is related to the tube diameter and
radius of gyration [9] RG by gt(rz) = ~6RGa. These
values are consistent with the behavior shown in Fig. 2(a)
in that g~ becomes proportional to t beginning at
t* = 10 and ending at t* = 10 . . If the virtual tube
were rigid, this region would persist until t* = ~d, or
until the MSD were equal to the mean-square end-to-
end distance (R2). However, since the 192-mers are only
5.5N, in length, contour length fluctuations reduce the
disengagement time to 20% of the nonAuctuating value.
Extrapolation of the t 5regio. n to (R ) gives rd = 10
which means that rd /rd = 10 /10 = 0.16, in close(F)

agreement with the 20% reduction predicted from the
relation by Doi.

The most surprising and significant result of these
simulations is the appearance of a plateau in the MSD
immediately following the t region. This plateau,
highlighted in the inset in Fig. 2(a), is not predicted by
current theoretical models of polymer dynamics. We
attribute this plateau to localized interchain contacts
or local knots whose relaxation time exceeds the tube

(F)
relaxation time ~d . This interpretation is consistent
with the prevailing views of polymer entanglements:
(1) that two chains intertwine to form a so-called local
"knot" [14], and (2) that surrounding chains form an
effective field of obstacles (i.e. , tube). Our results suggest
that both types of entanglements inhuence the MSD,
but that they occur on different time scales. While
the tube model successfully describes many aspects of
segmental motion for t* ( v.d, local knot formation would
explain the observed MSD plateau which persists for
more than 160 X 10 time steps. MSD analysis for
individual chains reveals oscillatory behavior which, upon
averaging, gives the observed plateau. These oscillations
are indicative of chain motion under the restraint of a
localized contact. Such local knots appear to be released
only after complete relaxation of the surrounding Quid as
dictated by tube decay.

During the MSD plateau, unrestrained sections of the
chain continue to experience displacement, and thereby
stretch restrained sections beyond their equilibrium or
Gaussian separation. This extension of chain sections
causes entropic energy to accumulate in the inner seg-
ments; when this is released a "superdiffusive" behavior
results as inner segment displacement equilibrates with
that of the entire chain. Following the plateau phase, the
scaling of the inner segment MSD with time is given by
g~(t) —t "2. Since the inner segment MSD and atomic
MSD must merge in the long-time limit (corresponding
to a displacement proportional to (R2)), this superdiffu-
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CR
(R2(t)R (())) —(R2)

(R4) —(R2)2

This function characterizes the decay in the magnitude of
the largest chain dimension. As presented in Fig. 2(b),
C&2 decays to zero at approximately the same time as the
plateau region in the MSD. Afterwards, Cg2 increases
steadily until the beginning of the MSD plateau and then
increases more slowly. During the period of accelerated
displacement for the inner segments, C~2 again increases
rapidly and exhibits a maximum at t' = 10 '. This
oscillatory behavior, indicating memory of previous chain
dimensions, is ascribed to chain recoil in a virtual tube
after knot release.

In conclusion, we present results from molecular dy-
namics simulations of entangled chains which cover the
longest time domain to date. These simulations are the
first to probe atomic displacement in the long-time limit,
an accomplishment made possible by judicious model
selection coupled with an efficient algorithm and high
speed serial computers. Atomic displacements for in-
ner segments experience a period of zero displacement

sive behavior maintains the appropriate scaling of the self-
diffusion coefficient (D —N 2). The inner segment dis-
placement for the P = 0.45 case also exhibits a plateau
but did not reach the accelerated diffusive regime. Fur-
ther simulations are in progress to determine the effect of
density on the MSD plateau width.

The MSD plateau and subsequent accelerated diffusion
also increase the relaxation time for the end-to-end vector
autocorrelation function, CR =— (R(t) . R(0))/(R ). The
decay rate of CR characterizes the longest relaxation time
in the system and is directly correlated to shear viscosity
and terminal relaxation time [9]. Figure 2(b) shows CR
for the 192-mer at P = 0.40. Simultaneous with the on-
set of the MSD plateau (t* = 10 ), a shoulder appears
which slows decay in CR. The source of this shoulder is a
persistent plateau in the CR of the inner 10 segments [also
shown in Fig. 2(b)] originating at the same time. This re-
tarded decay in CR indicates that orientational relaxation
is impeded during both the MSD plateau and the subse-
quent superdiffusive regime. A plateau in CR could ex-
plain the discrepancy between the tube model prediction
for shear viscosity and the experimental observation that
stress relaxation occurs more slowly for a given molecular
weight. Furthermore, storage of entropic energy during
the inhibited motion of entangled sections (i.e., stretching)
followed by subsequent accelerated motion and release of
the stored energy provides a molecular basis for nonlinear
rheological behavior such as elastic recovery and normal
stresses.

Further evidence for the proposed stretch-release-
acceleration mechanism associated with localized knot
formation is provided by the autocorrelation function for
the magnitude of the end-to-end vector C~2 defined as

which is attributed to a localized entanglement formed
by interchain contacts or knots. This new scaling region
(gt —to) in the MSD slows orientational relaxation and
could provide a molecular basis for reconciling theoretical
predictions with experimental observations on the shear
viscosity. Following release of these knots, inner seg-
ments of the chain experience accelerated diffusion which
maintains the appropriate scaling with respect to chain
length for the self-diffusion coefficient. Both the MSD
plateau and accelerated diffusion inhibit decay in CR and
create oscillations in CR2. Entropic energy stored and re-
leased during the stretch and recoil may also explain many
nonlinear rheological phenomena for entangled polymers.
Simulation results support the tube model for times less
than the disengagement time, while at longer times, lo-
calized knots become important obstacles to further diffu-
sion. Short video clips extracted from simulation results
may be viewed at http: //turbo. che.ncsu. edu/smithsw.
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