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Collisionless heating in low-pressure capacitively coupled rf discharges is usually attributed to a
stochastic interaction between electrons and the oscillating sheath. We show that this explanation is not
complete—there is a powerful heating mechanism associated with pressure effects that arise during the

expansion and contraction of sheaths.

PACS numbers: 52.50.Gj, 52.65.—-y, 52.75.—d

Capacitively coupled rf discharges have attracted at-
tention for many years [1] because of their interesting
physics and the existence of applications in areas like
semiconductor materials processing [2]. The center of
recent interest is the low-pressure regime where a variety
of novel effects have been observed including collision-
less heating, which is associated with the motion of the
plasma sheaths as the rf current oscillates [1,3,4]. In an
rf discharge, transient sheaths form on both electrodes.
As the rf phase advances, the sheath on one electrode
expands while the other collapses so that each sheath
cyclically advances and retreats. Since the sheath voltage
is generally much larger than the electron temperature
T., the sheaths usually present an impenetrable poten-
tial barrier to electrons; electrons can escape to an elec-
trode only when the adjacent sheath is fully collapsed,
or nearly so. So when an electron strikes a sheath it
will generally be reflected, and because of the sheath mo-
tion the electron energy will generally change on reflec-
tion. Although this change can be positive or negative,
it can be shown under certain assumptions that the aver-
aged effect is positive [1,5,6]. This heating mechanism is
known as stochastic heating. There are several stochas-
tic heating theories based on this “hard wall” view of the
sheaths [1,5,6]; they differ in their detailed assumptions,
and it is not clear which, if any, should be preferred,
but the underlying model that we have just described is
common and widely accepted. We show in this Letter
that an important heating effect exists that falls outside
the scope of the hard wall model and the theories de-
rived from it. We first demonstrate that this heating is
present and we then develop a quantitative theory to de-
scribe it. Our study uses results from a self-consistent
kinetic simulation based on the well-known particle in
cell algorithm, with Monte Carlo collisions (PIC-MCC)
[7-9]. This technique has been successfully applied to
many problems in low-temperature plasma physics, and
has demonstrated remarkable precision in calculations of
the exotic electron energy distribution functions that typ-
ically occur in low-pressure capacitively coupled dis-
charges [4,10,11]. Our implementation is conventional,
we use a one-dimensional explicit particle mover with
ion subcycling where relevant. In the calculations re-
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ported here we used a set of electron and ion collision
frequencies appropriate for argon gas at a pressure of
10 mTorr. Our choices of time step and cell size sat-
isfy the usual accuracy and stability criteria, and we used
~10° particles, which is a few hundred per cell.

Our investigation begins by considering an archetypal
collisionlessly excited rf discharge in argon [3,4,10]. We
excite a model plasma using a fixed current density of
amplitude 1 mA cm 2, between electrodes separated by
5 cm. The electrodes are assumed perfectly absorbing
of electrons and ions. This simulation reproduces the
features that have been considered characteristic of col-
lisionlessly dominated discharges in argon: heating con-
centrated at the plasma-sheath interface [4,10], negative
heating in the bulk plasma [4,10], and a distinctive two-
temperature electron energy distribution [3,4,10]. We
will compare the results of this bounded simulation with
a similar case with periodic boundary conditions. In the
periodic model, the plasma density distribution is con-
trolled by fixed positive charges which are placed to
correspond with the ion density distribution from the
bounded simulation, as shown in Fig. 1. This periodic
system initially contains an equal amount of positive
and negative charge, and is quasineutral everywhere, a
state which we maintain by suppressing the creation of
charged particles in “ionizing” collisions (we otherwise
use identical collision handling). The periodic model
closely resembles the bounded system when we drive it
with the same current density [12], except that any col-
lisionless heating cannot be stochastic heating owing to
the absence of sheaths. However, the heating is not much
diminished, and indeed all the above-mentioned charac-
teristic features of the bounded system are preserved in
the periodic analog, as we show for the heating in Fig. 1
and the electron energy distribution function in Fig. 2.
This is a compelling demonstration that the hard wall
stochastic heating model is insufficient. We next show
that the nonstochastic collisionless heating that appears in
the right half of Fig. 1 can be understood as a pressure
effect connected with the compression and rarefaction of
electrons as they flow in and out of the sheath regions (it
is convenient to retain this term for the regions of lower
density in the periodic system).
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FIG. 1. A comparison of the time-averaged electron heating
(JE) from a self-consistent simulation of a capacitively coupled
rf discharge excited at w,s = 27r X 13.56 MHz, in argon at
10 mTorr, with the results from the analogous periodic system
discussed in the text. Both systems are current driven with
an amplitude of 1 mAcm™. The solid line in the left half of
the figure is the result of the bounded simulation; the solid
line in the right half of the figure is the periodic result. The
corresponding dashed lines show the self-consistently computed
ion density profile and the model plasma density profile
assumed in the periodic calculation (the maximum density in
both cases is ~10° cm™). To facilitate the comparison, the
(JE) data from the periodic system have been modified by
discarding heating that occurs at times and in places where
electrons are absent in the bounded calculation.

It has been noticed before that pressure effects explain
the appearance of negative heating in the bulk plasma
[4], and are associated with collisionless heating in the
sheaths [13]. We argue here that pressure heating is a
distinct mechanism, not a fluid representation of stochastic
heating. The pressure effect in question is caused by
the difference in plasma density and temperature between
the bulk plasma and the sheath region. When a sheath
expands, electrons flow into the adjacent bulk plasma and
are compressed. At the same time, electrons are rarefied
as they flow into the opposite collapsing sheath. Since
the thermal conductivity of the bulk plasma is finite, these

10.0000 AR '
27 1.0000
>
|
> 0.1000}
~ 0.0100¢
w
¥ 0.0010¢}
0.0001 . . ,
0O 5 10 15 20

e (ev)

FIG. 2. A comparison of the electron energy distribution
functions from the bounded simulation and the analogous
periodic model system, for the same conditions as in Fig. 1.
These data are time averaged at x = 0. The solid and dashed
lines are from the bounded and periodic models, respectively.

simultaneous rarefaction and compression effects produce
nonequilibrium thermal disturbances, and the net work
being done is not necessarily zero, as we now show. The
temperature variations in the plasma are described by the
energy balance equation [13]
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where n., u., v., and g, are the electron density, drift ve-
locity, collision frequency, and thermal flux, respectively,
7. is a phenomenological energy relaxation time constant
incorporating inelastic collisions, etc., and E is the elec-
tric field. The electric field may be removed from Eq. (1)
using the momentum balance equation [13],
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We take it that meuz < kgT,, and, therefore, we have
neglected terms in the drift energy. Our solution of
Eq. (1) assumes that n, is independent of time and
that 7, can be separated into a time independent term

Téo), and a term that oscillates with the rf, Tél). Our

. 0) .
procedure is to express n, and Teg ) in terms of elementary
functions and hence obtain a linearizable equation for the

complex amplitude Te(l). To complete the development,
we approximate the time dependent part of the heat flux
by
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where k, = kBTe(O) /m, 7D, is the time- and space-averaged
electron thermal conductivity and v, is the electron
collision frequency. With the analytically convenient and
qualitatively plausible choices Téo)(x) = Tocosh(x/xy)
and n.(x) = ngsech(x/xp), and after further manipu-
lations involving the current continuity equation, the
linearized equation for TV is

d?.
— 1 - a?TV = F[(3x0 + 2x;) sinh

(xo + x1)
dx? *

X0X1
+ (Bxg — 2x1)

X sinh (o — x1) x:| , 4
XoX1
where a2 = (3/2k,)(1/7. — iweg), I' = JoTo/deny X
Kexox1, and Jy is the current density amplitude. There is
no difficulty in solving Eq. (4); since the solution is odd,
an appropriate boundary condition for a periodic system
of length 2L is Tél)(iL) = 0. We will not give the
complete solution, since it is relatively cumbersome and
not hard to derive. As Fig. 3 shows, the solutions are
essentially thermal waves [14] driven by the modulation
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FIG. 3. A sample solution of Eq. (4) of the text, showing
the thermal wave. The parameters (using symbols defined
in the text) are no = 6 X 108 cm=, Jo = 1 mAcm™? T, =
3eV, xo=08cm, x; =09cm, wys =27 X 13.56 MHz,
v, = 60 MHz, and L = 2.5 cm. The phase is referenced to
J(t) = Jo sin w,st.

of the electron temperature at the interface between the

sheath region and the bulk plasma. Given Tél), we can
recover the electric field from Eq. (2) and hence find
the time-averaged heating using (JE) = %Re JE*). A
comparison between this theory and the simulation is of
interest. For this calculation, we chose the plasma density
in the simulation to have the form assumed above, and
subsequently selected 7o and x; to match the simulation
results. In Figs. 4 and 5 we present comparisons between
the theory and simulation for the conditions specified
in the caption of Fig. 3. There is good qualitative and
fair quantitative agreement, which persists over a variety
of conditions different from those shown. A point of
interest is that the theory predicts the region of negative
heating at the center of the discharge [4]. This feature
appears when the pressure-driven contribution to the
current would exceed the total current if it were not
opposed by an electric field. These data indicate that
the theory captures the essential features of the pressure
heating mechanism. With the restriction that x; = xo, the
expression for (JE) can be approximately integrated to
give a compact formula for the space- and time-averaged
power P:

5~ Jéxo| SkaTosinh(2L/xo)
32k.(1 + B?)

+ m,P.sinh(L/xg) i| ,
5)

where the first term represents the pressure heating and
the dimensionless parameter 8 = 30)er(2) /8K, measures
the importance of thermal conduction effects. The terms
involving 7, are not important in the pressure range of
present concern. Equation (5) implies that the ratio of
pressure heating to Ohmic heating is given by

e2n0

Ppressure ~

2 —I
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FIG. 4. Comparison of the amplitude of the thermal wave
shown in Fig. 3 with results of a simulation for similar
conditions. The solid and dashed lines are the results of the
theory and the simulation, respectively.

so when 8 < 1, the ratio of pressure heating to Ohmic
heating is determined solely by the form of the plasma
density distribution.

Conventional fluid simulations based on the moment
equations do not completely include collisionless heating
[13,15], which seems surprising in view of the demon-
stration above that collisionless heating is not inherently
a kinetic effect. The following argument shows that this
apparent paradox can be resolved. Apart from the magni-
tude of the heating, the most striking difference between
kinetic and fluid simulations appears in the time-averaged

temperature distribution Téo)(x), which is peaked in the
sheaths in kinetic simulations, but essentially uniform in
fluid calculations [15]. In our theory we specified this
quantity a priori to agree with the kinetic simulation re-
sult. Had we allowed it to be in agreement with typical
fluid results [15], the predicted collisionless heating would

have been much smaller. A correct calculation of Téo)(x)
is therefore critical. Since (JE) is far from uniform,
Tego)(x) is sensitive to the heat transport term g., which
is conventionally computed from Eq. (3) or a similar ex-
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FIG. 5. Comparison of the time-averaged heating (JE) ob-
tained from the periodic simulation (left half of the figure) with
the result of the theory discussed in the text (right half of the
figure). The dotted line in the right half of the figure is the
Ohmic component of the heating calculated from the theory.
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pression [13,15]. When the collision frequency is small,
an unphysically large flux can result. This can be pre-
vented by placing an upper bound on the thermal conduc-

tivity using the flux-limited electron diffusivity given by

ngax) = vy A, where vy, is the electron thermal speed

and A = 2L/ is the diffusion length. The consequences
of this correction are illustrated in a direct numerical so-
lution of Eqgs. (1) and (2), in which we finite differenced
the spatial derivatives and performed a forward-marching
time integration to find a harmonic steady state solution
for T,(x,t), as in the kinetic calculations. We retained
the formulation already discussed, except for the substi-
tution of an Arrhenius-type expression [16] for the in-
elastic energy loss term in Eq. (1) and the insertion of
a temperature-dependent collision frequency in Eq. (2).
The results obtained in this way and shown in Fig. 6 are in
fair agreement with the kinetic simulation of Fig. 5. So it
seems that the absence of collisionless heating from fluid
models is rooted in an overprediction of the heat flux that
suppresses the thermal gradient across the plasma-sheath
boundary.

In conclusion, we have shown that there is a powerful
heating mechanism associated with pressure effects in ca-
pacitively coupled rf discharges, and we have presented
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FIG. 6. Comparison of the numerical solutions of essentially
Egs. (1) and (2), with and without the flux-limited thermal
conductivity. The left half of the figure shows the flux-limited
case, the right half the conventional solution. Solid lines denote
(JE) and dashed lines are T{”(x) expressed in arbitrary units.
In both cases Tﬁo) (x = 0) = 3 eV. Except as noted in the text,
the conditions are the same as in Figs. 3 and 5.

a quantitative theory derived from the moment equations
which is in good agreement with kinetic simulation re-
sults. The pressure heating effect persists in a periodic
model system and it is, therefore, not connected with the
presence of a sheath edge. These results are interesting
and important because they contradict two widely held
opinions: the non-Ohmic heating that occurs in rf dis-
charges in intrinsically a kinetic effect, and the heating
is predominantly associated with a stochastic interaction
with the sheath edge.

The author has benefited from several stimulating dis-
cussions on the topics of this Letter with Dr. D. Vender.
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