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Nonlinear Dynamics of Chirped Pulse Excitation and Dissociation of Diatomic Molecules
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The classical dynamics of a diatomic molecule modeled by a Morse oscillator interacting with a
chirped infrared laser pulse is studied. When the chirping rate is small, the system can be described
approximately in the moving frame by a time-independent Hamiltonian, which produces single-node
separtrices (buckets) in phase space. Systems trapped in the buckets undergo convection to dissociation.
This route to dissociation is different from the chaotic diffusion route for monochromatic excitation and
requires a much lower threshold laser intensity to achieve dissociation.

PACS numbers: 33.80.Wz, 03.20.+i, 33.80.Gj

The study of excitation and dissociation of molecules
by infrared lasers has been a subject of interest for
many years [1]. Up to now, experimental results are
available only for polyatomic molecules. Because of their
simplicity, much of the theoretical effort has been directed
towards diatomic molecules, and classical mechanics
provided much insight into the analysis. The dynamics
for fixed frequency excitation of diatomic molecules is
now quite well understood: The motion undergoes a
transition from quasiperiodicity at low excitation intensity
to chaos at higher intensity via overlapping of resonance,
and then the system diffuses towards dissociation after
the breakup of the last bounding tori [2—4]. Furthermore,
the threshold intensity can be estimated by applying the
Chirikov resonance overlap criterion [3—5]. However, it
has been shown that at the high laser intensity required
to achieve significant dissociation of diatomic molecules
the ionization process dominates, making monochromatic
dissociation without ionization unlikely [6].

Recently, it was demonstrated by quantum mechanical
calculations that chirped lasers can be used to reduce the
intensity required for infrared multiphoton dissociation of
diatomic molecules to an intensity range that is achievable
in present-day laboratories [6—9]. In view of the impor-
tance of chirped lasers, it would be useful to provide a
classical, intuitive picture of the excitation and dissociation
mechanisms. This is the objective of the present paper.

Frequency chirping also occurs in plasma physics, and
particle motion in a wave with time-dependent frequency
has been analyzed in terms of bucket dynamics [10].
Similar ideas can be applied to the present situation.
As in previous work [3,4,6—9], the diatomic molecule is
represented by a Morse oscillator, so that the Hamiltonian
of the driven system in dimensionless units is given by

H(x, p, t) = Hp(x, p) —Bx cos[A(t)t],

Hp(x, p) = zp + z(e —2e ').
Here, energy is measured in terms of 2D, where D is
the dissociation energy of the diatomic molecule, length

is measured in terms of I/cr, the range of the Morse
oscillator, and angular frequency is measured in terms
of the harmonic frequency of the Morse oscillator ceo =
ng2D/M, where M is the reduced mass of the molecule.
It is assumed that the dipole moment of the molecule
can be written as q, x/n, so that the driving amplitude
B is related to the electric field E of the laser by B =
q, E/2nD. The driving frequency is assumed to be of
the form

1 t
A(t) = Ap 1 ——

&sw ~
(2)

and we shall study the linear chirping case with np = 1

in detail. In terms of the action-angle variables (i, 0),
the molecular Hamiltonian takes the simple form Hp(i) =
—2(1 —i) so that the frequency of unperturbed motion
is given by co(i) = BHp/rii = 1 —i, and the Cartesian
coordinate x can be expanded in a Fourier series in 0
[3,4, 11]. When A(t) is a slowly varying function of
time, adiabatic invariance allows us to define instanta-
neous resonance frequencies and action satisfying A(t) =
mco(i ), m = 1, 2, . . . , yielding i = 1 —A(t)/m. Ex-
panding the total Hamiltonian about i and keeping only
the resonant excitation term, we obtain the Chirikov
Hamiltonian

H(0, j, t) = ——+ j + BG cos[mO —I),(t)t]],
jz 0, .

(3)
where j = i —i, G = m '[iz/(2 —i~)], and i~
is the value of i at the stable fixed point of the system.
For fixed frequency excitation, iz = i . For chirped
pulse excitation, the value of i~ will be discussed below.
Finally, a time-independent Hamiltonian can be obtained
by making a canonical transformation to the "moving

frame" with p = t —0 and J = j—+ t:—
K(P, J) = + V(P),

J2

(4)
V(P) = BG cosmP ——
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where, for linear chirping with np = 1, A = A—p/2r,
is a constant. U(P) will have local maxima and minima
and thus creating "buckets" if

IAI/m BG ( 1. (5)

Then the centers or stable fixed points of K oc-
cur at J = 0 and P,' = (2l7r —6)/m, where 6 =
sin '(~A ~/m BG ), l = 0, ~ 1, ~ 2, . . . ; and the saddle
points are given by J = 0, P,' = [(2l + I)7r + &]/m.

The buckets are defined by the trapped regions of the
separatrices passing through the saddle points. In Fig. 1

we sketch the potential U(P) and the phase space tra-
jectories for IC(p, 1), which are similar to those in [10].
As in [10], trajectories inside the buckets will oscillate
about the centers whose actions increase in time according
to i~(t) = i —At/m = 1 —Ap/m + Apt/mr, and
dissociate when iz —1. The trajectories located initially
far from the separatrices will not be confined by the buck-
ets; they will oscillate about constant (negative) values of
j asymptotically and will not dissociate.

In Figs. 2(a) and 2(b), we show the trajectories ob-
tained by numerically integrating Hamilton's equations
for the Hamiltonian of Eq. (1) for Ap = 0.9 and 1.1, re-
spectively, and observe that their behavior did fall into
these two categories. For Ap = 1.1, the lowest initial
resonant action is i2 = 0.45, and the trajectory with initial

action i(0) = 0.1 simply oscillates about a constant value
until A(t) decreases sufficiently to trap it in the first reso-
nance zone and carry it upwards. The slopes of the dis-
sociating trajectories all have numerical values very close
to Ap/m~, and the slope of i~(t).

The Poincare maps of the dissociating trajectories,
obtained by recording the values of the action-angle
variables before dissociation at times t„given by
A(t„)t„= 2n~, n = 0, 1, 2, . . . , are presented in

Figs. 3(a) and 3(b) for Ap = 0.9 and 1.1, respectively.
Note that at t„mod(0, 2~) = 2' mod(P, 27r). These
phase portraits indeed correspond to those for K(P, J),
and resemble those for fixed frequency excitations [3,4].
Thus for trajectories near the resonant actions i and
trapped by the buckets the approximate Hamiltonian
Eq. (4) provides a good description of the dynamics.

The physical picture that emerges from the above stud-
ies on chirped pulse dissociation is the following: Disso-
ciation occurs when the system is trapped by the bucket
in phase space and transported convectively upwards in
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FIG. 1. (a) The potential U(P), and (b) phase space por-
trait in the moving frame for B = 0.003, m = 1, AO =
0.9, and r, = 2000.

FIG. 2. Exact trajectories for B = 0.003 and r, = 2000. (a)
Ao = 0.9. The initial conditions for the bound trajectories
are (i(0), 0(0)) = (0.1, m. ), (0.55, 0.57r), while those for the
dissociating trajectories are (i(0), 0(0)) = (0.1, 0), (0.55, 0.8').
(b) A, o = 1.1. The initial conditions for the bound tra-
jectories are (i(0), H(0)) = (0.1, vr), (0.45, 1.6~), (0.633 33, 7r),
while those for the dissociating trajectories are (i(0), 0(0)) =
(0.1, 1.87r), (0.45, 1.8~), (0.633 33, 0.8 ').
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Thus the relevant resonant action is i&, and we only
have to consider the approximate Hamiltonian Eq. (4)
with I = 1. Then the threshold amplitude Bth is es-
timated by finding the minimum value of B satisfying
~i~ —i(0)~ = Ai T.his theoretical value of Bu, can be
compared with the corresponding one determined numeri-
cally by the following procedure: For each value of
Ap and B, the dissociation probability PD can be com-
puted from the fraction of dissociating trajectories when
100 trajectories with evenly distributed initial angles are
integrated. The numerical threshold amplitude at which
P~ ~ 0+ can then be determined using the bisection
method. In Table I, we present the values of B,h deter-
mined by these two methods. The qualitative behavior of
the numerical results is similar to those calculated from
bucket dynamics especially for Ap ~ 1, although the op-
timal Ap is determined numerically to be 1.02, while the
bucket dynamics consideration yields the value 0.98.

In Fig. 4 we present dissociation trajectories for four
different cases to illustrate the effects of changing the
time dependence of the driving frequency and of using
a more realistic dipole moment function. We see that
the trajectories of a nonlinear chirped pulse [with n„= 2
in Eq. (2)] oscillate about is(t), which now increases
quadratically with time, showing that the picture of bucket
dynamics applies to this case as well. A realistic dipole
moment function for NO has been obtained from a fit with
ab initio calculations [14]

y = (n'/n)x + a, (6)
FIG. 3. Poincare maps of the dissociating trajectories for
B = 0.003 and ~, = 2000. To aid visualization, we plot
J + i (0) vs P/m. , where i (0) = 1 —Ap/m is the initial
resonance action closest to i(0) (a) Ap . = 0.9. The initial
angles for the trajectories with initial action i(0) = 0.1 are
H(0)/7r = 0, 0.4, 0.8, while those with initial actions i(0) =
0.55 are 0(0)/7r = 0, 0.2, 0.8. (b) Ap = 1.1. The initial
angles for the trajectories with initial action i(0) = 0.45 are
0(0)/w = 1.0, 1.2, 1.8, while those with initial actions i(0) =
0.633 33 are 0(0)/vr = 0, 1.2, 1.6.

action at a rate of Ap/mr, , which is proportional to the
chirping rate. This route to dissociation is very differ-
ent from the case of fixed frequency excitation, where
neighboring resonance zones begin to overlap and the
system becomes chaotic and diffuses in phase space to
dissociation.

Associating with each value of B satisfying the ex-
istence condition of (5) is a bucket or resonance zone,
whose width Ai centered at is is given by z(Ai)
V(P,') —V(P,'+'), where the right hand side is the depth
of the bucket. The system will be trapped in the bucket
if its initial action lies within Ai, which allows us to
estimate the threshold field strength for dissociating a
diatomic molecule. Using the Einstein-Brillouin-Keller
(EBK) quantization rule [12], the action for a Morse os-
cillator in the ground vibrational state is given by i(0) =
2 Fin//2MD For the NO molecu. le with D = 6.4968 eV
and n = 2.76806 A. ' [l3], we obtain i(0) = 0.0091.
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where n' = 1P29 A ', a = 0.1058, b = 0.6017, and
is chosen to be (n/n')[e'/" /(1 —a/b)]] so that

dp, /dx = 1 at x = 0. The trajectories using p, (x) ini-
tially follow closely those using the linear dipole function
[Eq. (1)], but begin to get out of phase when x becomes
large and p, (x) is no longer linear in x, and reaches a
plateau before finally dissociating. Nevertheless, the
initial excitation of the molecule to a highly excited
state is well described by the convectional mechanism
discussed above. Also, the dissociation threshold using
p, (x) is found to be about a factor of 2 higher than the
linear dipole case.

Finally, we have calculated classically the dissociation
probabilities PD for the chirped pulse of Ref. [6], em-

ploying 1000 trajectories. Our results are very similar to
the quantum results shown in their Fig. 1, with PD rising
rapidly at about 96 cycles to reach an asymptotic value,
except that our P~ approaches 0.4 instead of 0.5. Fur-
thermore, we have calculated P~ as a function of the pulse
area S (Fig. 3 of Ref. [6]). Again the classical results are
similar to the quantum ones, except the peak PD occurs
at S = 1.3~ instead of 1.6~. Similar agreement between
quantum and classical results has also been observed in
Ref. [9].

In summary, we have analyzed the classical dynamics
of chirped pulse excitation of a diatomic molecule where
the excitation frequency is a linearly decreasing function
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TABLE I. Threshold amplitudes as a function of O, p.

Ap

100B,h (theory)
100B,h (numerical)

0.90

1.05
1.81

0.95

0.47
0.86

0.98

0.31
0.45
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0.32

1.02

0.32
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FIG. 4. Dissociating trajectories for the molecule NO initially
in its ground vibrational state with i(0) = 0.0091, g(0)/7r =
1.6, B = 0.014, ~, = 2000, and Ap = 1.05. Dashed line:
linear dipole moment, n~ = 1; dotted line: linear dipole
moment, n„= 2; thin solid line: nonlinear dipole moment,
n~ = 1; thick solid line: nonlinear dipole moment, n„= 2.

of time. When the rate of frequency chirping is small,
adiabatic invariance allows us to reduce the Hamilton-
ian of the system to a time-independent Hamiltonian in
a moving frame governing bucket dynamics. The route to
dissociation is now clear: When the trajectory of the sys-
tem in phase space is trapped by the bucket in the moving
frame, it will be carried upwards convectively until it dis-
sociates. The threshold amplitude for photodissociation
of molecules in the their ground vibrational states is then
determined by the existence condition of the bucket and
the overlap of the initial action with the lowest order res-
onance action. This is much smaller than the threshold
amplitude for fixed frequency excitation, which requires
the overlap of adjacent resonance zones to initiate diffu-
sive chaotic motion. For the NO molecule, q, = 0.25e,
the threshold amplitude at Arl = 1.05 is determined nu-

merically to be B = 0.0065 using p, (x) of Eq. (6), which
corresponds to a laser intensity of 1.16 X 10' W/cm2.
Lower threshold intensity could be obtained by optimiz-
ing the pulse shape [6,9], and it should be possible to pho-
todissociate such a molecule using infrared chirped laser
pulses in the laboratory.
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