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In Search for Signs of Chaos in Branching Processes
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For systems that involve particle production through branching processes, the concept of chaos is
explored. The measures that can describe their behaviors are investigated. Monte Carlo simulation is
used to generate events according to perturbative QCD and an Abelian model. It is shown how the
measures proposed distinguish the two cases in ways that characterize the chaotic behavior.
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It has been known for some time that the nonlinear,
non-Abelian dynamics of the classical Yang-Mills field
has chaotic solutions [1,2]. More recently, it has been
shown by lattice calculation that the classical non-Abelian
gauge theory generally exhibits deterministic chaos and
that the Lyapunov exponents can be numerically deter-
mined [3—5]. How to extend the investigation to the
quantum theory is, however, unclear inasmuch as the no-
tion of quantum chaos for dynamics is not well defined
[6,7]. In this paper we take the first step in that direction,
not just going into the quantum dynamics of a nonlinear
theory, but into the realm of particle production of quan-
tized fields.

In this uncharted territory we have very little guidance
on what to study in our search for signs of chaos. It is not
clear what a trajectory is in QCD, even less, the distance
between two trajectories. What exactly is Kolmogorov
entropy (well defined in classical dynamics [8]) is also
unclear in the multiparticle production problem. Our first
objective is therefore to find some measure that can play
the role of distance between trajectories and some other
quantity that conveys the loss of information in the final
state.

In order to know whether or not we have found
the right measures, it is necessary to test our ideas on
different dynamical problems and show that the measures
can effectively distinguish different characteristics. We
shall therefore concentrate on two branching processes
in particle production. One is the pure gluon theory in
perturbative QCD; the other is a cascade model (to be
referred to as the ~ model) that has none of the features
of the gauge theory. We shall regard the gluons (partons)
as particles and ignore hadronization so that we may focus
on the issue of chaoticity in the branching dynamics.

In either case we start with a parton having timelike
virtuality Q and use computer simulation to study the
evolution of the system through branching. The Monte
Carlo code generates the parton momentum distribution
that, in the case of QCD, satisfy the Altarelli-Parisi
evolution equations [9—11]. The splitting functions for
the two cases are drastically different, and the ways the
virtualities degrade are also different. They give rise to
the diverse behaviors that emerge. The question is how

to find a quantitative measure of the diversity that is useful
from the point of view of chaoticity.

One of the difficulties in the problem posed is that time
is not an explicit variable when calculating momentum
distribution. Moreover, with the number of degrees
of freedom increasing in the cascade process, there
is no obvious way to generalize the definition of a
trajectory in classical dynamics. However, branching has
an irrefutable physical notion of the direction of time,
and parton multiplicity n increases with time as long as
we consider only tree diagrams (without recombination),
which we do. Thus we take two conjugate views: the
"temporal" development (parametrized by n), without
regard to the parton momenta, and the "geometrical"
characteristics in the momentum space at the end of the
evolution. In some rough sense this corresponds to the
two views of the classical systems that are related by
ergodicity.

Concerning trajectory and distance between trajecto-
ries, our thinking is as follows. The classical field inten-
sity is replaced in the quantum case by the number n of
quanta, and the distance between two field configurations
can be represented by the variance, D, of the n distri-
bution, P, . This distribution arises after repeated simu-
lation from the same initial condition, i.e., a fixed initial
virtuality Q . Quantum fluctuation is enough to replace
the small variation of the initial condition in classical dy-
namics. With the average (n) regarded as a measure of
the evolution time, Dz as a function of (n) can then be
regarded as the quantum analog of the classical distance
function d(t). This (n) is the average multiplicity, not just
in the final state, but along the evolution process.

More precisely, let us focus on one event and use a tree
to represent a particular branching process. Regardless
of the virtuality q of any line, all vertices of the same
generation are put at the same branching level, and a label
i is given to each generation between two levels, starting
with i = 0 for the initial parton at Q . By ignoring q
in the genealogy of the tree, we are emphasizing topology
and overlooking momenta. Let n; denote the number of
partons at the ith generation. We shall use the event
averaged (n;) in lieu of time, although a simple linear or
exponential relationship between the two is not expected.
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In fact, (n;) may not increase monotonically with i, even
if n; does; in such a case we use only the increasing
portion. For the measure that plays the role of distance,
we define the normalized variance

V, = ((.,') —(., )')/(. , )' (1)
This differs from the second cumulant moment K2 by a
term —1/(n;), and it is better because K2 can become
negative (thus precluding log-log plots), while V, is
always positive. A rapid increase of V; with (n;) can
be interpreted as the analog of the "divergence of nearby
trajectories" in classical dynamics. Clearly, if V; remains
constant or decreases, one does not become more ignorant
about the state of the system as it evolves, and thus it
cannot be regarded as exhibiting chaotic behavior.

For Monte Carlo simulation we follow the procedure
described by Odorico [10]. For both pure-gauge QCD
and the ~ model, we start with virtuality Q and end at

Qo. The splitting function for g ~ gg is

P(z) =6 +
z 1 —z

+ z(1 —z), (for QCD),

(2)
where z is the momentum fraction of the daughter parton
in the frame, where the mother parton's momentum is 1.
In terms of the Sudakov form factor S(Q, Qo), one can
calculate the probability of emitting a resolvable gluon
occurring between Q and Qo, when it occurs in the
simulation at q, then z is chosen to be in the range zo ~
z ~ 1 —zo, where zo = Qo/q . The daughters evolve2

separately from the maximum virtualities, qi = zq and

q2 = (1 —z)q, according to the same procedure as
applied to the mother. The running coupling constant is,
as usual, n, (q ) = 4m. /11 log(q /A ) where we have set
X, = 3, Nf = 0 and shall use A = 250 MeV. Branching
ceases when q reaches Qo or below.2 2

In the g model we use the splitting function

P(z) = 6z(1 —z) (for the ~ model). (3)
There is no infrared or collinear divergence and, therefore,
no evolution. Nevertheless, we introduce Q dependence
by requiring that the daughter virtualities be zq and
(1 —z)q2, when the mother virtuality is q2, and z can
be any value between 0 and 1. We require branching
to occur successively until the virtualities of all lines
reach Qo. We consider this model because it exemplifies
the Abelian dynamics without infrared and collinear
divergences. Yet, the multiplicity of particles produced
depends on Q so that the result of branching can be
compared with the non-Abelian case, although for very
different Q/Qo.

We have simulated these two branching processes by
running 10 events each, using Qo = 1 GeV. The results
on V; vs (n;) are shown in the log-log plot in Fig. 1

for various values of Q/Qo indicated. While it is hard
to produce high multiplicity in QCD unless Q/Qo is
extremely large, particles are copiously produced in the g
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FIG. 1. Normalized variance vs average multiplicity at vari-
ous generations in the branching processes.

model at moderate Q/Qo. The general features of V; vs
(n;) for the two cases are markedly different. The QCD
result shows a power-law increase in the high (n;) range

V; ~(n;), ~ =0.4,
where the exponent K is approximately independent of
Q . The ~ model, on the other hand, shows a rapid
rise initially, but is followed by a precipitous drop after
reaching a maximum. Indeed, the maximum V; decreases
with increasing Q . Clearly, this is not a case that
suggests chaotic behavior.

For gluon branching, the monotonic increase of V; with
(n;) implies that, as the branching proceeds, the amount
of particles produced in any event becomes more and
more unpredictable. The power-law dependence may be
regarded as the analog of the exponential increase with
time of the distance between classical trajectories that are
initially close by. However, there is no way to relate sc to
the Lyapunov exponents, since among other differences
the notion of time is not well defined here. By itself,
sc = 0.4 does not indicate how chaotic the behavior is.
There is a need for another measure of chaoticity.

If Fig. 1 is viewed as the analog of the description of
the temporal behavior, another place to search for signs of
chaos is in the phase space of the particles. As the system
evolves, more and more information is lost on where
the partons are (or more precisely, what their momenta
are), therefore entropy increases, not only because of the
increase of the number of particles, but also because of the
dynamical fluctuations in their momenta. We therefore
consider a multifractal description of that fluctuation and
focus on the information dimension as a characterization
of the entropy of the system [8].

Since at each vertex of branching a daughter's momen-
tum fraction z is known in the simulation, the momentum
x of a final particle as a fraction of the initial particle is

1269



VOLUME 75, NUMBER 7 PH YS ICAL REVIEW LETTERS 14 AUGUsT 1995

X(x) = p(x') dx' p(x') dx', (5)

where x1 and x2 are two extreme points in the distribution
p(x), between which X varies from 0 to 1. In terms of
X the inclusive distribution p(X) is constant. For each
event the fluctuation in X space is then studied by dividing
the interval 0 ~ X ~ 1 into M bins and calculating the
factorial moments

fq(M) = M P n~(nz —1) . (nz —
q + 1), (6)

J=1

where nJ is the multiplicity in the jth bin. After averaging
over all events, the normalized factorial moment

F, = (f,)i(f )' (7)

is known to contain no statistical 11uctuations [13].
What interests us is its behavior near q = 1, where

we can extract the information dimension D1. To that
end, it is necessary to extend the definition of Fq in (6)
to noninteger q. A method for achieving that without
losing the attribute Fq = 1 for Poissonian fluctuation
has recently been developed [14]. Using that method,
we have calculated Fq for a continuous range of q, as
shown in Fig. 2, for both QCD and the g model. The
results for the two cases are very different and provide a
distinct contrast between them. They are in accord with
the temporal behavior shown in Fig. 1 in that, for q ) 1,
F ~ 1 in the g model, meaning that the distribution isq
sub-Poissonian, while Fq ) 1 in QCD, indicating large
fluctuations. The geometrical properties in the X space

therefore calculable by x = P; z;, where z; is the mo-
mentum fraction of the descendant at the ith generation.
Since the particle distribution p(x) is highly peaked near
x = 0, it is smoother to examine the distribution in the
cumulative variable X, defined by [12]

X2

(10)

are not revealed until we investigate the M dependence.
We find that in both cases Fq is not sensitive to M, as can
be seen from the various lines in Fig. 2, corresponding to
different M values. Thus the behavior has no interesting
multifractal property: D1 = 1 in both cases.

The origin of the lack of significant M dependence can
be traced to Fq itself, where the event averaging cancels
out the fluctuations. Event by event, the values of F' =
f'/(fi)q (where e labels an event) fluctuate greatly,q
especially when M is large. To quantify the degree of that
IIuctuation, we define event-averaged (vertical) moments
of the (horizontal) F' moments

C„,,(M) = (F,"(M))/(F, (M))", (8)

where (Fq) = 2f P, (F')", 3V being the total number
of events. We then calculate C„q(M) for 0 ( p (
2, and q = 2, 3, 4. It is found that C„q(M) indeed
exhibits significant M dependences, as shown in Fig. 3.
In all cases of p and q, the Z model has smaller Cz q
compared to QCD, implying smaller fiuctuations of F'.
The M dependences do not show linearity over any
extended range in the log-log plots, the best being from
M = 50—20. In that range, we write

C„,(M) Mq' (». (9)
From the slope Pq(p) in the neighborhood of p = 1, we
can calculate the index p, q, defined by

d
pq = Aq(p)lp=i

dp
The result of our simulation yields for q = 2, 3, 4 the
values p, q

= 0.0061, 0.054, 0.23 in the case of QCD,
and 0.0014, 0.010, 0.046 in the g model, respectively.
Clearly, for each q, p, ~ is significantly larger than p, .
We now give a physical interpretation of p, q as an entropy
index to be used as a new measure of the event fluctuation
in branching processes.

If we define P' = F'/ g, F', and then define Hp q
=

g, (P')", we have an entropy in the event space

Sq = —gP'lnP' = — InHp~p=) .
e
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FIG. 2. Factorial moments of continuous order for various bin
sizes. Q/Qo = 10 for QCD and Q/Qo = 20 for the g model.

FIG. 3. C„q vs M for various values of p and q. Q/Qo =
10 for QCD and Q/Qo = 20 for the g model.
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Hz q and Cz q can be related by their definitions, yielding

d
InC„q~„=i = In3V —Sq.

dp

From (9) and (10) we obtain

S = In(GUM " ),

(12)

(13)

apart from a possible additive term, independent of 2V
and M. p, q appears to be related to the information
dimension; but it is not, because Sq is not the entropy
defined in the X space, which is the one that is divided
into M cells. The event space in which Sq is defined has
not been partitioned into small cells. The meaning of (13)
can be seen in two extreme cases: (a) If F' is the same
for every event, then P' = I/3V, and Sq = In3V; (b)
if only one event has F' 4 0, and F' = 0 in all others,
then Sq = 0. Thus case (b) is more ordered in the event
space than (a); that is, it is more disordered to spread out
an observable (F' in this case) over all events (even if
F' = const) than to confine it to a few events having
nonzero values (analogous to the increase of entropy of an
expanding gas). (The case of all F' = 0 is excluded from
consideration in order to render I" meaningful. ) Thus

Sq decreases when there are more events with F' = 0,
signifying more order in the event space. From (13), we
see that p, q is a measure of that decrease, which in turn
implies more fluctuation in F'.

At large M, only large spikes in small bins contribute to
F', especially when q is large. Events with large spikes
are rare. Consequently, the fluctuation in F' from event
to event becomes more pronounced with increasing q.
That behavior is now quantified by p, q. We may therefore
use p, q to characterize the spatial properties of the chaotic
behavior of a branching process. We have, however, at
this stage no quantitative criterion on how small p, q must
be in order to signify no chaotic behavior.

We can relate the classical and quantum problems in
our description in the event space as follows. Consider
a neighborhood N, around an initial point in phase space
for a classical trajectory. For chaotic dynamics, starting
the system from any point in N, leads to, after a sufficient
length of time, widely different trajectories. We may
regard 3V of these trajectories in N, as corresponding to
JV branching events, all with the same initial virtuality,
but having different outcomes. F'(M) describes the final
state of the system for the eth event, and p, q describes
the degree of fluctuation of F' from event to event.
Sufficiently large values for the index p, q therefore signify
chaotic behavior of the branching process.

In conclusion, we have found features pertaining to
QCD branching that are not shared by the ~ model, which
represents Abelian branching. Because of the nonclassical
nature of the system, we have had to search for new
measures and observables. The dependence of V; on
(n;) reveals the temporal behavior, while Fq, C„q, and

p, q describe the "spatial" properties. All these measures
taken together give a collective description of the degree
of chaoticity in a branching process. We have found that
V; increases with (n;) in QCD, while it decreases for the

Z model. The dependence of Fq on q are totally different
for the two cases. C„q and p, q are much larger for QCD
than for the g model. These results suggest collectively
that QCD branching is chaotic, while the g model is not.
Among the measures considered, V; (and higher moments
of n;, which could also have been considered) vs (n;)
contains detailed information about the branching process
from generation to generation, but it is not accessible to
experiment. The others describe the characteristics of the
final state and can be determined experimentally in most
high-energy collisions. The entropy index p, q is most
unusual and deserves further investigation.
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