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Thermodynamics of Spacetime: The Einstein Equation of State
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The Einstein equation is derived from the proportionality of entropy and the horizon area together
with the fundamental relation BQ = T dS. The key idea is to demand that this relation hold for all the
local Rindler causal horizons through each spacetime point, with BQ and T interpreted as the energy
Aux and Unruh temperature seen by an accelerated observer just inside the horizon. This requires that
gravitational lensing by matter energy distorts the causal structure of spacetime so that the Einstein
equation holds. Viewed in this way, the Einstein equation is an equation of state.
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The four laws of black hole mechanics, which are
analogous to those of thermodynamics, were originally
derived from the classical Einstein equation [1]. With
the discovery of the quantum Hawking radiation [2], it
became clear that the analogy is, in fact, an identity.
How did classical general relativity know that the horizon
area would turn out to be a form of entropy, and that
surface gravity is a temperature? In this Letter I will
answer that question by turning the logic around and
deriving the Einstein equation from the proportionality of
entropy and the horizon area together with the fundamental
relation BQ = T dS connecting heat Q, entropy S, and
temperature T. Viewed in this way, the Einstein equation
is an equation of state. It is born in the thermodynamic
limit as a relation between thermodynamic variables, and
its validity is seen to depend on the existence of local
equilibrium conditions. This perspective suggests that
it may be no more appropriate to quantize the Einstein
equation than it would be to quantize the wave equation
for sound in air.

The basic idea can be illustrated by thermodynamics of
a simple homogeneous system. If one knows the entropy
S(E, V) as a function of energy and volume, one can de-
duce the equation of state from BQ = T dS. The first
law of thermodynamics yields BQ = dE + pdV, while
differentiation yields the identity dS = (BS/BE) dE +
(BS/BV) dV. One thus infers that T ' = BS/BE and
that p = T BS/BV The l. atter equation is the equa-
tion of state, and yields useful information if the func-
tion 5 is known. For example, for weakly interact-
ing molecules at low density, a simple counting argu-
ment yields S = ln(No. accessible states) ~ lnV + f(E)
for some function f(E). In this case, BS/BV ~ V ', so
one infers that p V ~ T, which is the equation of state of
an ideal gas.

In thermodynamics, heat is energy that fiows between
degrees of freedom that are not macroscopically observ-
able. In spacetime dynamics, we shall define heat as en-

ergy that Aows across a causal horizon. It can be felt via
the gravitational field it generates, but its particular form
or nature is unobservable from outside the horizon. For

the purposes of this definition it is not necessary that the
horizon be a black hole event horizon. It can be simply
the boundary of the past of any set 6 (for "observer").
This set of horizon is a null hypersurface (not necessarily
smooth) and, assuming cosmic censorship, it is composed
of generators which are null geodesic segments emanat-
ing backwards in time from the set 6. We can consider
a kind of local gravitational thermodynamics associated
with such causal horizons, where the "system" is the de-
grees of freedom beyond the horizon. The outside world
is separated from the system not by a diathermic wall, but

by a causality barrier.
That causal horizons should be associated with entropy

is suggested by the observation that they hide information
[3]. In fact, the overwhelming majority of the informa-
tion that is hidden resides in correlations between vacuum
fiuctuations just inside and outside of the horizon [4].
Because of the infinite number of short wavelength field
degrees of freedom near the horizon, the associated "en-
tanglement entropy" is divergent in continuum quantum
field theory. If, on the other hand, there is a fundamen-
tal cutoff length l„ then the entanglement entropy is finite
and proportional to the horizon area in units of l„as long
as the radius of curvature of spacetime is much longer
than l, . (Subleading dependence on curvature and other
fields induces subleading terms in the gravitational field
equation. ) We shall thus assume for most of this Letter
that the entropy is proportional to the horizon area. Note
that the area is an extensive quantity for a horizon, as one
expects for entropy [5].

As we will see, consistency with thermodynamics
requires that l, must be of order the Planck length
(10 cm). Even at the horizon of a stellar mass black
hole, the radius of curvature is 10 times this cutoff scale.
Only near the big bang or a black hole singularity or in
the final stages of evaporation of a primordial black hole
would such a vast separation of scales fail to exist. Our
analysis relies heavily on this circumstance.

So far we have argued that energy Aux across a causal
horizon is a kind of heat flow, and that entropy of the
system beyond is proportional to the area of that horizon.
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It remains to identify the temperature of the system into
which the heat is Bowing. Recall that the origin of
the large entropy is the vacuum fluctuations of quantum
fields. According to the Unruh effect [8], those same
vacuum fluctuations have a thermal character when seen
from the perspective of a uniformly accelerated observer.
We shall thus take the temperature of the system to be
the Unruh temperature associated with such an observer
hovering just inside the horizon. For consistency, the
same observer should be used to measure the energy flux
that defines the heat How. Different accelerated observers
will obtain different results. In the limit that the accel-
erated worldline approaches the horizon the acceleration
diverges, so the Unruh temperature and energy Aux di-
verge; however, their ratio approaches a finite limit. It is
in this limit we analyze the thermodynamics, in order to
make the arguments as local as possible.

Up to this point we have been thinking of the system
as defined by any causal horizon. However, in general,
such a system is not in "equilibrium ' because the horizon
is expanding, contracting, or shearing. Since we wish to
apply equilibrium thermodynamics, the system is further
specified as follows. The equivalence principle is invoked
to view a small neighborhood of each spacetime point p
as a piece of flat spacetime. Through p we consider a
small spacelike 2-surface element 2 whose past directed
null normal congruence to one side (which we call the
"inside') has vanishing expansion and shear at p. It
is always possible to choose 'P through p so that the
expansion and shear vanish in a first order neighborhood
of p. We call the past horizon of such a I' the "local
Rindler horizon of 2," and we think of it as defining
a system —the part of spacetime beyond the Rindler
horizon —that is instantaneously stationary (in "local
equilibrium" ) at p. Through any spacetime point there
are local Rindler horizons in all null directions.

The fundamental principle at play in our analysis is this:
The equilibrium thermodynamic relation 6Q = T dS, as
interpreted here in terms of energy Aux and area of local
Rindler horizons, can be satisfied only if gravitational
lensing by matter energy distorts the causal structure of
spacetime in just such a way that'the Einstein equation
holds. We turn now to a demonstration of this claim.

First, to sharpen the above definitions of temperature
and heat, note that in a small neighborhood of any space-
like 2-surface element 2 one has an approximately flat
region of spacetime with the usual Poincare symmetries.
In particular, there is an approximate Killing field g
generating boosts orthogonal to 2 and vanishing at 2.
According to the Unruh effect [8], the Minkowski vac-
uum state of quantum fields —or any state at very short
distances —is a thermal state with respect to the boost
Hamiltonian at temperature T = Rlr/2', where lr is the
acceleration of the Killing orbit on which the norm of
A" is unity (and we employ units with the speed of light
equal to unity). The heat flow is to be defined by the

Tab A'

(In keeping with the thermodynamic limit, we assume the
quantum fluctuations in T,b are negligible. ) The integral
is over a pencil of generators of the inside past horizon

of 2 . If k' is the tangent vector to the horizon
generators for an affine parameter A that vanishes at 2
and is negative to the past of P, then A' = —IrAk' and
dX' = k' dA dW, where d A. is the area element on a
cross section of the horizon. Thus the heat fIux can also
be written as

AT bk k dAdA. . (2)

Assume now that the entropy is proportional to the
horizon area, so the entropy variation associated with a
piece of the horizon satisfies dS = zlzz%, where BA.
is the area variation of a cross section of a pencil
of generators of A. The dimensional constant zj is
undetermined by anything we have said so far (although
given a microscopic theory of spacetime structure one

FIG. 1. Spacetime diagram showing the heat flux BQ across
the local Rindler horizon A of a 2-surface element 2 . Each
point in the diagram represents a two dimensional spacelike
surface. The hyperbola is a uniformly accelerated worldline,
and A' is the approximate boost Killing vector on A.

boost-energy current of the matter, T,by", where T,b is
the matter energy-momentum tensor. Since the tempera-
ture and heat Bow scale the same way under a constant
rescaling of g, this scale ambiguity will not prevent us
from inferring the equation of state.

Consider now any local Rindler horizon through a
spacetime point p (see Fig. I). Let A" be an approximate
local boost Killing field generating this horizon, with the
direction of ~' chosen to be future pointing to the inside
past of 2 . We assume that all the heat flow across the
horizon is (boost) energy carried by matter. This heat
flux to the past of 2 is given by
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may someday be able to compute g in terms of a
fundamental length scale). The area variation is given by

OdAd&,

where 0 is the expansion of the horizon generators.
The content of BQ = T dS is essentially to require

that the presence of the energy flux is associated with
a focusing of the horizon generators. At 2 the local
Rindler horizon has vanishing expansion, so the focusing
to the past of 2 must bring an expansion to zero at just
the right rate so that the area increase of a portion of the
horizon will be proportional to the energy flux across it.
This requirement imposes a condition on the curvature of
spacetime as follows.

The equation of geodesic deviation applied to the null
geodesic congruence generating the horizon yields the
Raychaudhuri equation

d0 1

dA 2
= ——0 —o —R,b k'k, (4)

where a. = o o. b is the square of the shear and R b

is the Ricci tensor. We have chosen the local Rindler
horizon to be instantaneously stationary at 1, so that 0
and cr vanish at 1 . Therefore, the Oz and a. terms are
higher order contributions that can be neglected compared
with the last term when integrating to find 0 near 2 . This
integration yields 0 = —AR bk'k" for sufficiently small
A. Substituting this into the equation for BA. we find

AR bk k dAdA. .

With the help of (2) and (5) we can now see that 6 Q =
T dS = (h~/2')gBA can be valid only if T,bk'k
(hg/2')R, bk'k for all null k', which implies that
(27r/hrj)T, b

= R„b + fg, b for some function f. Local
conservation of energy and momentum implies that T,b

is divergence free and, therefore, using the contracted
Bianchi identity, that f = —R/2 + A for some constant
A. We thus deduce that the Einstein equation holds:

1 2m
Rab Rgab + Agab Tab (6)

Rg
The constant of proportionality g between the entropy and
the area determines Newton's constant as G = (4hg)
which identifies the length g '/ as twice the Planck
length (h G) ' . The undetermined cosmological constant
A remains as enigmatic as ever.

Changing the assumed entropy functional would change
the implied gravitational field equations. For instance, if
the entropy density is given by a polynomial in the Ricci
scalar nn + niR + . , then BQ = T dS will imply
field equations arising from a Lagrangian polynomial in
the Ricci scalar [9]. It is an interesting question what
"integrability" conditions must an entropy density satisfy
in order for 6Q = T dS to hold for all local Rindler
horizons. It seems likely that the requirement is that the
entropy density arises from the variation of a generally

covariant action just as it does for black hole entropy.
Then the implied field equations will be those arising from
that same action.

Our thermodynamic derivation of the Einstein equation
of state presumed the existence of local equilibrium con-
ditions in that the relation BQ = T dS applies only to
variations between nearby states of local thermodynamic
equilibrium. For instance, in free expansion of a gas, en-
tropy increase is not associated with any heat flow, and
this relation is not valid. Moreover, local temperature and
entropy are not even well defined away from equilibrium.
In the case of gravity, we chose our systems to be dehned
by local Rindler horizons, which are instantaneously sta-
tionary, in order to have systems in local equilibrium. At
a deeper level, we also assumed the usual form of short
distance vacuum fluctuations in quantum fields when we
motivated the proportionality of entropy and horizon area
and the use of the Unruh acceleration temperature. View-
ing the usual vacuum as a zero temperature thermal state
[11], this also amounts to a sort of local equilibrium as-
sumption. This deeper assumption is probably valid only
in some extremely good approximation. We speculate
that out of equilibrium vacuum fluctuations would entail
an ill-defined spacetime metric.

Given local equilibrium conditions, we have in the Ein-
stein equation a system of local partial differential equa-
tions that is time reversal invariant and whose solutions
include propagating waves. One might think of these as
analogous to sound in a gas propagating as an adiabatic
compression wave. Such a wave is a traveling distur-
bance of local density, which propagates via a myriad
of incoherent collisions. Since the sound field is only a
statistically defined observable on the fundamental phase
space of the multiparticle system, it should not be canon-
ically quantized as if it were a fundamental field, even
though there is no question that the individual molecules
are quantum mechanical. By analogy, the viewpoint de-
veloped here suggests that it may not be correct to canoni-
cally quantize the Einstein equations, even if they describe
a phenomenon that is ultimately quantum mechanical.

For sufficiently high sound frequency or intensity one
knows that the local equilibrium condition breaks down,
entropy increases, and sound no longer propagates in
a time reversal invariant manner. Similarly, one might
expect that sufficiently high frequency or large amplitude
disturbances of the gravitational field would no longer
be described by the Einstein equation, not because some
quantum operator nature of the metric would become
relevant, but because the local equilibrium condition
would fail. It is my hope that, by following this line of
inquiry, we shall eventually reach an understanding of the
nature of "nonequilibrium spacetime. "
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