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Invariant Tori and Heisenberg Matrix Mechanics: A New Window on the Quantum-
Classical Correspondence
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Despite the seminal connection between classical multiply periodic motion and Heisenberg matrix
mechanics, we show that there are fundamental, previously undisclosed aspects of this quantum-classical
correspondence. These include a quantum variational principle that implies the classical variational
principle for invariant tori and the connection between commutation relations and quantization of action
variables. Possible applications are described briefly.
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Though applications of great interest (and increasing
complexity) continue to be developed, e.g. , [1,2], the
theory of the semiclassical quantization of invariant
tori, using Einstein-Brillouin-Keller (EBK) quantization
conditions, appears to be a closed (or at least quies-
cent) sector in the study of the relationship between
the quantum mechanics and the classical mechanics of
bound nonseparable systems (for a review, see [3]).
The goal of this Letter is to show, nevertheless, that
some fundamental aspects of the relationship between
quantum mechanics (in the Heisenberg form) and a form
of semiclassical mechanics due primarily to Percival and
Pomphrey [4—7] (see also [8]) have been overlooked.
In the exposition that follows we have tried to be alert
to the fact that neither formalism is as widely known
as (perhaps) it deserves to be. Although Percival's
formulation has been applied extensively and with con-
siderable success to problems in molecular physics [3], it
receives only brief mention in the recent books on chaotic
dynamics [9]. The associated quantum method, though
more than three decades old [10], is mainly known within
the context of the nuclear many-body problem [11].
Therefore it is appropriate to start with brief accounts
of these two methods. Then follows our main thrust,
the derivation of Percival's method from the appropriate
quantum formalism. Space permits us to emphasize only
the conceptual aspects of this relationship. Nevertheless,
there exist intriguing possibilities for applications that we
discuss briefly at the end of the account.

We start, therefore, with Percival's scheme. For def-
initeness, consider a system described by coordinates
x;, i = 1, . . . , N, x = (x~, . . . , x~), and the Lagrangian

1 21. = P —x,' —V(x). (1)
l

For motions that are multiply periodic (on an invariant
torus), the coordinates may be expanded in Fourier series,

x; = gx; k(I) exp(ik . 8),
k [x;, [H, x;]] = 1, (7)

where 8 and I are vectors representing the N angle
variables and their corresponding action variables. The
equations of motion for the Fourier coefficients,

(ra . k) x;k = B(V)/Bx; k = F; k, (3)
can be derived from the variational principle

a(L)/ax; k ——0. (4)

Here eo = (d8/dt) is the frequency vector, and angular
brackets indicate a phase average of the enclosed dynami-
cal variable, i.e., the constant term in its Fourier series.
In carrying through this variation, the frequencies are
held fixed. Classically, Eq. (3) can serve as the basis for
systematic perturbation theory or can be solved nonper-
turbatively for a finite subset of the amplitudes x; k, as
functions of the frequency vector cv. To quantize the sys-
tem, we adjoin the EBK quantization conditions in a spe-
cial form (also h = 1),

1, = g(x;(ax, /ae, )) = (n, + —,'~, ), (5)
l

where n~ is an integer comprising the components of
a vector n, and u~ the associated Maslov index, usu-
ally equal to 2 for a vibrational degree of freedom. The
frequencies and the energy E(n) = (H) are now deter-
mined as functions of n. We emphasize that the approach
just described (there are alternatives based on Hamilton's
equations) represents a complete method for the study of
bound, nearly integrable systems in classical mechanics
and in semiclassical quantum mechanics.

Next, we describe the natural quantum progenitor
[10,12,13] of the formulation associated with Eqs. (4)
and (5). In the following, we emphasize two aspects of
this quantum formulation. The first is that the quantum
mechanics of bound systems can be studied on the basis
of the pairs of equations, describing the dynamics and the
kinematics, respectively,

[[x;,H], H] =(8 V/Bx;) = F, , (6)
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where the Heisenberg equation of motion p; = x; =
—i[x;, H] has been utilized to eliminate momenta and
time derivatives. A scheme for calculating matrix ele-
ments and energy differences, whose salient features will
now be described (see also Ref. [12]),utilizes the energy-
diagonal representation ~n), where H~n) = E(n)~n). The
equations of motion (6) are applied for arbitrary matrix
elements, but only diagonal elements of the commutator
(7) need be included, as we shall demonstrate later during
the discussion of the quantum-classical correspondence.
The notation implies that we are confining our attention
to systems for which the bound states can be character-
ized by a set of integers equal in number to the number
of degrees of freedom of the system (invariant tori). In
evaluating matrix elements of the (nonlinear) force term
in the equations of motion, we make use of the complete-
ness relation,

(n(AB~n') = g(n]A)n") (n" [B~n'), (8)
~//

where in the simplest cases both A and B are compo-
nents of x, though more general functions of the coor-
dinates can be handled [14]. A useful algorithm results
when the sum over intermediate states (n") converges suf-
ficiently rapidly. Either starting from the ground state ~0)
and "working one's way up" in n values, or else starting
from some reference state ~n) and working both up and
down, provided one introduces suitable closure approxi-
mations to cut off the sums (discussed more fully below
in the proof of the quantum-classical correspondence), one
can derive a set of nonlinear algebraic equations for the
determination of a corresponding number of matrix ele-
ments (n~x;~n ~ k) and elementary energy differences,
E(n + 1;) —E(n), where 1; is the ith unit vector in the
space of n vectors. From these results, the matrix ele-
ments of any other operator, in particular, the energy, can
be computed.

We have actually alluded above to two different quan-
tum schemes. The one that calculates from the ground
state up is fully quantum and is unrelated to any semiclas-
sical approximation. The second, which builds a calcu-
lation about a reference excited state, is the one that can
be the starting point for a semiclassical approximation,
that therefore enters into the quantum-classical correspon-
dence arguments given below.

The second aspect of the quantum scheme that we wish
to emphasize is that the equations of motion (6) can be
derived from a quantum variational principle. Consider
the functional [15]

G = —TrL

1= Tr ——g[x;, H][H, x;] + V(x) . (9)
l

Though formally extended over all states, in practice the
trace is restricted to a finite sum, as described above.
The equation of motion (6) follows from the variational

principle,

aG/a(n(x;(n') = 0,

(n~L~n) = (L) [1 + O(n) ]. (13)
To be explicit, in the evaluation of (n~L~n), we encounter,
typically, a matrix element (switching, for convenience, to
a one-dimensional notation)

(n + ki[A(n + ki + k2) = (n —
2 4IAln + 2 4)

1 l dA/, (n)+ kj + —k2 + . (14)
2 ) dn

For this expansion to converge requires that the Fourier
series for the dynamical variables converge sufficiently
rapidly that k& and k2 can be taken as small compared
to n The series . (14) can be then considered as an
expansion in 1/n, since each derivative brings in a power
of 1/n (one may think of how harmonic oscillator matrix
elements grow with n, but the result stated is quite
general). The assertion in (13) is that in consequence
of the choice made above for the quantum-classical
correspondence the error is of order (1/n) . Because
in the expansion (14), all matrix elements are referred
to a fixed value of n, the phase averaged quantity (L)
depends only on this value, and the trace thus becomes a
decoupled sum, one term for each state. The convenience
of a variational formulation of the equations of motion

when the energy differences that enter in the evaluation of
(9) are held fixed.

We are finally in a position to present the crux of this
Letter, namely, the arguments that lead from the appro-
priate one of the quantum schemes just described to the
semiclassical quantization scheme previously reviewed.
Here we shall use the correspondence principle in a form,
differing from that introduced in the first days of quantum
mechanics, that has been recognized [3,8, 16] as appro-
priate to obtain semiclassical rather than purely classical
accuracy. For example, if A is a real Hermitian opera-
tor, we associate the Fourier coefficients in the expansion
corresponding to (2) with a displaced matrix element ac-
cording to the equation

Ak(n) = A k(n) = (n —
z k~A~n + z k), (11)

and associate the classical frequencies with correspond-
ingly displaced energy differences,

cu, (n) = E(ni, . . . , n; + 2, . . .)
—E(ni, . . . , n; —&, . . .) . (12)

To study the limit for the dynamics, it is sufficient
to confine our attention to the variational principle (10).
In the evaluation of (n ~

L
~ n), we expand every matrix

element and energy difference encountered in a Taylor
series about the reference values just defined. Because of
the symmetrical choices made for these reference values,
we find the result
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is that the result (13) summarizes the quantum-classical
correspondence for the dynamics.

The argument just given in relation to Eq. (14) also al-

lows us to emphasize the difference between semiclassi-
cal and quantum approximations. In a quantum calcula-
tion, k2 plays a role of Fourier index, the same as in the
semiclassical approximation. However, taking n as the
reference value, kI appears as an n-mixing or bandwidth
index. This means that the matrix element exhibited is

sharply peaked in k2 but slowly varying in k&, and there-
fore the two dependencies should be treated differently.
It is our uniform experience with many different types of
applications [11]that this slow dependence precludes the
omission of some matrix elements that by their presence
render the system of equations overdetermined. The way
out of this dilemma is to use the physics of each appli-
cation to relate the values of the supernumerary elements
to those within the chosen subset. In our problem, this is
particularly straightforward, since if the maximum value
of k~ in a given approximation is K~ a simple closure
approximation for the quantum case, valid, according to
previous arguments, for large n, is

(n + g~ ~A~n + kl + k2) = (n + K~~A(n + K~ + kz),

kl KI . (15)
In summary, a semiclassical approximation is fully deter-
mined by specifying a maximum Fourier component. A
quantum approximation has a second parameter, the band-
width, that, roughly speaking, provides a multiplicative
factor for the number of variables and also requires a clo-
sure approximation. Without being able to supply further
details, we emphasize again that there are actually two
quantum methods. One, not related to the semiclassical
approximation, builds from the ground state. A second,
valid for large quantum numbers, depends on the semi-
classical approximation as the starting point. Both are
designed to improve on the accuracy of the latter.

There remains the question of the relationship between
the commutation relations (7) and the EBK quantization
conditions (5) [17]. It is necessary that such a relationship
exist, but since the commutation relations are more
general than the EBK quantization conditions, just as
for the dynamics, the discussion must be tied to the
existence of invariant tori. Our solution follows the route,
commutation relations ~ Poisson brackets ~ Lagrange
brackets ~ EBK conditions. We outline the procedure.
(i) The first step is to show that the Fourier series (2)
for x; and the corresponding series for p; = x; represent
a canonical transformation from the original canonical
variables x, p to the new set 0, I, i.e., we must show that
these series satisfy the Poisson bracket (PB) relations. But
the diagonal elements of the commutation relations (7), all
that were required to be satisfied in the quantum scheme,
have as their classical limit only the phase average of
the corresponding PB relation. We must prove that all
remaining Fourier coefficients of this relation and the

complete Fourier series of all other PB relations vanish
identically. Toward this end, the first step is to show that
all fundamental commutators are constants of the motion,
i.e., that their time derivatives vanish in consequence of
the equations of motion. This is an elementary exercise,
requiring only, in addition to the equations of motion,
the Jacobi identity satisfied by the commutator bracket.
This means, of course, that the vanishing of all off-
diagonal elements of the commutators is a dynamical
consequence of the equations of motion. A second step
is to recognize that all diagonal elements other than
the one utilized in the algorithm vanish from simple
symmetry relations. Finally, the diagonal elements in
the calculational scheme are determined to have their
correct values. The classical limit of the totality of
these assertions constitutes the necessary statements about
PB relations and constitutes a proof that the series (2)
and the corresponding one for the momenta define a
canonical transformation to action-angle variables. At
the same time, the quantum considerations in the above
demonstration provide the promised justification for our
choice of kinematical conditions in the quantum scheme,
since what has been shown is that these are the only
nontrivial kinematical conditions that are not, in fact, a
consequence of the dynamics. (ii) The next step is to
remember [18] that the array of PB relations and an
associated set of Lagrange bracket relations are reciproca1
matrices in phase space, one set therefore implying
the other. But it is not difficult to demonstrate from
the Percival form (5) that a typical EBK quantization
condition is an integrated form of the phase average of
the Lagrange bracket between 0; and I;. The integration
constant, which is the Maslov index, will be determined
both by the commutation relations and the geometrical
properties of the canonical variables on a case by case
basis. This completes our discussion of the quantum-
classical correspondence.

We add some brief remarks about possible applications.
The listing and discussion, far from exhaustive, will be
limited to three high-priority topics.

(1) A semiclassical application. —In the literature of
atomic physics [1] and of chemical physics [3], Percival's
and related methods are perceived of as quite distinct from
another powerful approach to semiclassical quantization,
the Birkhoff-Gustavson (BG) method [19]. In the lat-
ter one carries out algebraically a series of perturbative
canonical transformations in order to express the Hamil-
tonian as far as possible as a polynomial in action vari-
ables, which is then quantized. Since any nonperturbative
solution of Percival's equations is exact to a known order
of perturbation theory (and involves a selective summa-
tion of higher order contributions), it is intuitively clear
that it should be possible to construct a BG type solution
directly from a Percival solution. This possibility, which
remains to be implemented, has been overlooked in the
literature.
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(2] Quantization scheme for invariant tori. —With only
a modest increase in computational effort, it is feasible
to apply the method of Heisenberg matrix mechanics
described in this Letter to the same class of problems
for which the application of semiclassical approximations
have hitherto been successful. [As noted after Eq. (15),
there are actually two different quantum approximation
methods. ] Such applications will be reported in a more
complete publication.

(3) Quantization of classically chaotic systems —T. he
study of bound quantum systems associated with classi-
cally chaotic motion has usually been based on diagonal-
ization of the Hamiltonian in a convenient and often large
basis of states. It would be of interest if we could replace
the large-basis linear calculation by a small basis nonlin-
ear one. Consider a two-dimensional system and suppose
it to possess only bound states. (In any event we use a no-
tation with discrete labels only. ) We make no assumption
concerning the existence of invariant tori, but simply or-
der the energy levels of the system with coordinates x, y,
in a linear sequence, N = 0, 1, . . .. A calculation can be
based on the equations (with corresponding equations for
the coordinate y)

(FN' FN) XNN' (Fx)NN'

P%w —~w) i~we I (17)
N'

where FN are the exact eigenvalues. These equations can
be viewed in two ways, either as a set of sum rules to be
satisfied by the exact solutions of the quantum mechanical
problem, found by some other means such as matrix
diagonalization in a basis, or else as the foundation for a
computational scheme generalizing the schemes described
for invariant tori. By summing the commutation relation
from 0 to N, we can replace (17) by the positive sum
(with a corresponding equation for y),

oo N

P (F&i —F&«)Ix&«tv, I = N + 1. (IS)
N'=N+1 N"=0

These relations are interesting because they guarantee the
convergence of certain sums, and thus imply that the
matrix elements cannot spread out too far as a function
of energy differences. The utility of this observation
remains to be demonstrated, but imparts some measure
of optimism concerning the application of this formalism.
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