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Earthquake Cycles and Neural Reverberations: Collective Oscillations in Systems with
Pulse-Coupled Threshold Elements
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Driven systems of interconnected blocks with stick-slip friction capture main features of earthquake
processes. The microscopic dynamics closely resemble those of spiking nerve cells. We analyze
the differences in the collective behavior and introduce a class of solvable models. We prove that
the models exhibit rapid phase locking, a phenomenon of particular interest to both geophysics and

neurobiology. We study the dependence upon initial conditions and system parameters, and discuss
implications for earthquake modeling and neural computation.

PACS numbers: 87.10.+e, 05.20.—y, 64.60.Cn, 91.30.Px

Many natural phenomena involve interacting threshold
elements. Slowly driven by some external force, single
elements discharge rapidly when they reach a trigger
threshold, then become quiescent again. This activity
may in turn stimulate neighboring elements. Prominent
examples include earthquakes, avalanches, forest fires,
colonies of flashing fireflies, and assemblies of spiking
nerve cells. The corresponding models, although closely
related on a formal level, exhibit distinct collective
properties that range from systemwide synchronization [1]
to self-organized criticality [2,3]. Phase locking without
global synchronization has been identified as an important
borderline phenomenon between both cases [4,5] and has
been observed under various conditions [2—12].

In this Letter, a class of solvable models is intro-
duced. The dynamics resemble those of previous earth-
quake models [2,3,7 —10] and integrate-and-fire neurons

[1,6, 11,12], and reduce to Abelian avalanches [8] in a lim-

iting case. We prove that for nearest-neighbor couplings
and periodic boundary conditions, the models rapidly re-
lax to phase-locked solutions —the attractors are reached
as soon as every element has discharged once. Next, we
study the dependence upon initial conditions, coupling pa-
rameters, and boundary conditions. We then extend the
class of interactions and discuss the connection with net-
works of spiking neurons. Finally, we outline implica-
tions for earthquake modeling and neural computation.

Geophysical description of the model. —Seismic activ-

ity occurs predominantly on faults located at the bound-
aries between tectonic plates. Relative plate movement
leads to a slow accumulation of stress that is quickly re-
leased during earthquakes. We follow Refs. [2,3,7—10]
and concentrate on the dynamics of a single fault, rep-
resented by a rectangular two-dimensional lattice. The
stress at site i is modeled by a scalar variable F;.

The duration of earthquakes, typically less than a
minute, defines a first time scale of the fault dynamics. A
second time scale, governed by the stress loading process,
is given by the recurrence time between "characteristic

events, " the largest earthquakes on a fault. The shortest
observed recurrence times are in the 10-yr range, more
than 6 orders of magnitude longer than the duration of
single events. Neglecting aftershocks, earthquakes may
thus be approximated as instantaneous events, separated
by silent episodes of uniform stress increase [2,3,7—10].
The remaining time scale is chosen such that dF;/dt = 1.

Stick-slip friction is incorporated by a static fracture
criterion. When one of the F; reaches the threshold Fth,
it is reset to zero. At the same time, the stresses F„„of
i's four nearest neighbors are increased by nF, h, where
n ( 1/4. This rule provides an exact description of
single slips in slider-block systems [13];see [3].

Events with multiple slips occur if during and due to
the relaxation of block i, a neighboring block j becomes
unstable (when FI = F,h). In models that lack a short
time scale and inertial terms, the resulting coupled motion
can only be described approximately. For example,
Olami, Feder, and Christensen [3] assume that block i
has slipped to zero-stress position before block j starts to
move. This implies that F~ usually exceeds Fth at the
beginning of j's relaxation.

As an alternative, we consider the opposite extreme,
where site j is reset as soon as Fth is reached. Accord-
ingly, the fixed quantity o.F,h is redistributed. To account
for the previous excess stress F~ —F,h, a fraction y is ac-
cumulated by site j after the relaxation. If more than one
site is unstable, a fixed update order is chosen as in [3].

Without loss of generality, F,h is set to unity [14].
The system is initialized with random values for the
F;, independently drawn from a uniform probability
distribution with width w ~ 1 [15] so that F; E [I—
w, 1]. The dynamic can then be summarized as follows:

(i) Initialize the F; randomly in [I —w, 1].
(ii) If F; ~ 1 and if i is next in the update scheme then

F; ~ F,' = y(F; —1), (1)

(2)
(iii) Repeat step (ii) until F; ~ 1 for all i
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(iv) If the condition of step (ii) does not apply then
dF;/dt = 1 for all i. (3)

Two cases, y = 0 and y = 1, are of particular interest.
For y = 1, the update order in (iii) does not influence
the evolution of the system in terms of its stable configu-
rations (all F; ( 1). In addition, fast, (1) and (2), and
slow dynamics, (3), commute. The system is Abelian and
equivalent to an avalanche model proposed by Gabrielov
[8]. For y = 0, the stick-slip model of Feder and Feder
[10] is recovered in the limit n = 1/4. The model of
Ref. [3] is obtained if (2) is replaced byF„„F„'„=F„„+nF; . (4)
If only a single site is relaxed at a time, (2) and (4) are
identical. Events with multiple slips differ, in general,
and give rise to distinct collective properties.

Phase locking. —For periodic boundary conditions, the
Abelian model (y = 1) approaches cyclic oscillations
with period P = 1 —4n [8,12]. In what follows, we
prove that an attractor is reached as soon as every site has
slipped once, and that this result holds for all 0 ~ y ~ 1.

Any site i slips at most once during one event. To
cause a second failure, at least one neighbor would have
to discharge twice before the ith element does so. By
induction, this is impossible because n ~ 1/4.

The stress increase due to slipped neighbors does not
depend on whether they relax in a single or several events.
This implies that during any time interval of length P no
site i relaxes more than once: F, increases by at most
1 —4n due to (3) and by up to 4n if all neighbors slip.
At least the same total amount is lost in a single slip (1).

It is next shown that transients have a finite duration.
Let t „denote the first time where all sites have failed
at least once, t; the last instance where site i slides
before tmax tmj„ the minimum of all t;, and j a site that
fails at t;„without being triggered by other sites at that
time. By definition, all sites discharge at least once in

[t;„,t „].This means, in particular, that every neighbor
of j slips at least once between t;„and t,„. Each event
adds a to F~. The total increase hF~ is thus at least
4n + t „—t;„. By assumption, site j fails once in

[ nnn q ~gg] j ~ay mjp P.
The result implies that every site fails exactly once in

[t;„,t~,„] and no site fails in (t~,„—P, tm;„). Since
t „~w, this proves that in finite time t „,a limit cycle
is approached in the sense that F; (t) = F; (t —P) for
t ) t,„(Fig. 1) [17]. The argument also shows that the
attractor is reached as soon as every element has slipped
once. This finishes the proof [18].

For y ( 1, P-periodic oscillations with one slip per
cycle cannot occur if a site is driven above threshold
because a single stress drop would exceed unity, the total
stress increase over one cycle. This means that the system
relaxes to fine-tuned states, where if site i is triggered
by n of its neighbors at time t, F;(t ) = 1 —no. [19].
It follows that although every toppling sequence of the
Abelian model can be realized for y ~ 1, the volume of
all attractors is greatly reduced in terms of the F;.
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In the limit n ~ 0, (2) and (4) become identical. This
may explain why the model of Ref. [3] quickly freezes in
P-periodic states for small to intermediate n [4].

Parameter dependence. —For small n and large
enough w, events are expected to be localized with
exponential size-frequency relation [20] as observed in
numerical experiments (Fig. 2). If, on the other hand,
w ~ n, the very first rupture has to lead to a systemwide
avalanche, followed by a globally synchronized oscilla-
tion. If w 2n, a slipped row triggers the entire adjacent
row as soon as a single element of the second row fails.
The example illustrates domino effects due to stress
accumulation.

If w + 4n ~ 1, a slipped site is reset to a value that is
smaller than the minimal stress of blocks that have not yet
failed. Since the system is driven uniformly, slipped sites
cannot catch up with the other elements. Thus every cell
slips exactly once during the transient. This implies that
the time evolution depends only on the ratio r = w/n
and that toppling sequences do not depend on y.

Slips of yet unruptured areas have to occur if their
corners reach threshold. At time t, the stress of a corner
site is at least 1 —w + 2n + t, the stress of the block
that failed first is at most 4n + t. This means that for
w + 2n ( 1 all sites slip once before the first site slips
twice. The previous bound w + 4n ( 1 can thus be
improved to w + 2n ~ 1.

Numerical experiments were performed on lattices with

up to 1024 sites. Data were taken from single limit cycles
and multiple runs, and indicate that the size-frequency
relation is self-averaging. Below the line w + 2n = 1, it
follows a power law, frequency (event size )n) ~ n
at r = 2.44 4- 0.02. A numerical value of B = 0.79 ~
0.05 was obtained. Sample averages from the first event
after reaching the attractors give Bf gsf 0.05 ~ 0.03.

1223
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FIG. 1. Transient and periodic limit cycle. Time evolution
of the total stress F„„&= g, F; in a system with 1024~
sites and periodic boundary conditions; y = 1, w = 1, and
u = 0.2495. Vertical drops of size 5 correspond to events
with P 'b, = 5005 slipped sites [16].
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FIG. 2. Dependence upon internal dynamics (n) and initial
conditions (w) for periodic boundary conditions. Local events
and global synchronization are separated by a line where the
size-frequency relation obeys a power law. The solid line
represents numerical results for y = 1. The line is valid for
arbitrary y if w + 2n ~ 1. The other auxiliary lines refer to
theoretical bounds discussed in the text.

FIG. 3. Intermittent behavior. Each cross marks the size
(~10) and time of an event in a system with 40 sites and
open boundary conditions; y = 0, w = 1, and n = 0.24. The
system exhibits almost periodic behavior where events "repeat"
after a time T = 1 —3u = 7P, as is clearly visible when event
times are shown modulo T (here for 1000P ( t ( 3000P).

The difference is due to nonuniform stress accumulation
during the lattice filling process and is also reflected in
temporal inhomogeneities of the limit cycles. For w » 1

and n ~ 1/4, transient times diverge when measured in
terms of P, and 8 = Br;„, = 0.03 ~ 0.03 for y = 1 [20].

Open boundary conditions. —Because of the reduced
number of neighbors, sites located at the edges (and cor-
ners) of the lattice receive less pull and cannot sustain the
maximum failure rate P . The resulting dynamical de-
fects propagate into the bulk and prevent complete phase
locking. For y = 1, synchronized clusters gradually
change due to the loss and new recruitment of phase-locked
cells, and one observes (quasi-)periodic behavior [8] with
exponential size-frequency relations for n ( 1/4. For
y = 0, the fine tuning described earlier leads to a differ-
ent intermittent behavior, where clusters remain virtually
unchanged over many cycles before they suddenly merge
or break apart (Fig. 3). The main slip frequency shifts
from (1 —4n) ' to (1 —3n) ', demonstrating that the
boundary strongly effects the collective behavior, a situ-
ation characteristic for extended driven systems.

Long transients and intermittency complicate quantita-
tive numerical investigations. Extensive simulations re-
veal that for small y (at least) sample averages exhibit
self-organized criticality. As in Ref. [3], the exponent 8
depends on u. For y = 0, it is B = 0.40 ~ 0.05 at n =
0.1 and 8 = 0.52 ~ 0.05 (see also [10])for n ~ 1/4.

ModeL extensions and biological interpretation. —To
describe more general interactions, (2) is replaced by

F F' = F) + TJ, ,

where T~; denotes the size of a pulse from i to j. Pos-
sible extensions include systems of arbitrary dimension
and aspect ratio, and inhomogeneous, nonisotropic, and
long-range interactions to represent granularity or depth-
dependent material properties. For non-negative coupling
strengths that satisfy the condition

QTJ; =A ~ 1 forall j,
the convergence proof remains valid, with 4n replaced by
A. Notice that symmetric couplings, T;~ = T~;, are not
required in the proof.

To account for spatially varying loading I; and nonseis-
mic stress decrease due to slow creep, Eq. (3) could be
replaced by a leaky-integrator equation

dF /dt = Fr ' + I—;. (7)

The equation points to a potentially rich connection
between slider-block models and networks of integrate-
and-fire neurons [21]. In the new context (7) describes the
time evolution of cell potentials F; due to leakage currents
and external stimuli I;. When cell i reaches the firing
threshold F,h, it resets and emits a short electrochemical
pulse. Depending on the sign of the synaptic efficacy T~;,
this pulse excites or inhibits other cells [22].

Simulations of leaky integrate-and-fire models with
excitatory nearest-neighbor couplings and uniform inputs
exhibit three salient features [12]: (a) within a very short
time [23] the networks converge to locally synchronized
solutions; (b) on a longer time scale, clusters of coherent
neurons slowly reorganize [24]; and (c) the early cluster
shape depends significantly on the initial conditions. With
nonuniform "grey values" for the F;(0), areas with small
"brightness" variation ~ are encoded by large populations
of synchronized neurons, as already suggested by Fig. 2.
The results demonstrate that coupled integrate-and-fire
neurons are able to quickly bind objects —here defined
as regions of similar grey value —by synchronized firing
patterns that are held in a dynamic short-time memory
through neural reverberations.

Discussion. —On some faults, large earthquakes have
repeated with remarkable coherence over a few cycles
[25]. According to a prevalent view, inhomogeneities are
needed to generate these characteristic events [26]. Our
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results prove, however, that complex "seismic cycles" can
emerge as collective phenomena in homogeneous single-
fault models. At the same time, self-organized criticality
(with exponents that depend on the amount of stress
dissipation) may occur, at least on the level of ensemble
averages.

The similarity between avalanche models and networks
of spiking neurons has led to speculations about a
neurobiological role of self-organized criticality [11].
However, whereas for earthquakes and sandpiles, the
main interest is in the properties of the stationary state, for
neural computation, it is the convergence process which
does the computation and is thus of particular interest.
Furthermore, computations must be taken rapidly, and
in any event the assumption of constant external input
implicit in all models breaks down at longer times.

As shown by the present model, coupled integrate-and-
fire neurons are able to perform rapid computations. For
y = 1, the model dynamics can be described by a down-
hill motion on an "energy landscape" generated by a Lya-
punov function [16]. This makes it possible to "program"
specific tasks [12] and extend our understanding of col-
lective computation in attractor networks from previous
models based on a firing-rate description to biologically
more realistic models with spiking neurons.

The comparison with Ref. [3] shows that minute de-
tails of the local dynamics can have a pronounced ef-
fect on the emergent behavior of nonequilibrium systems
[27]. For open boundary conditions, replacing (4) by (2)
leads from apparently chaotic trajectories to approximately
phase-locked solutions. The oscillation frequency of these
solutions is strongly influenced by the boundary condi-
tions. Phase locking itself, however, appears to be a robust
phenomenon in systems with fixed stress transfer. The re-
sults indicate that quantized pulses may play an impor-
tant role for the rapid formation and long maintenance of
metastable oscillations in pulse coupled systems.
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