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The physical problem of molecular distribution dynamics in liquids which contain applied electric
fields and electromagnetic radiation is modeled. In particular, the effect of electrophoretic mobility

changes of dissolved molecules due to radiation excitation is included in the present model. The
resulting set of coupled nonlinear partial differential equations governing the spatial motion of these
molecular distributions over time exhibit solitary wave solutions for some values of the equation
parameters. Higher resolutions of two components in capillary electrophoresis are predicted.

PACS numbers: 82.45.+z, 66.10.Ed

Trapping atoms in a vacuum using optical fields is
a beautiful topic in both theoretical and experimental
physics [1]. However, trapping atoms and molecules
inside a liquid using optical fields is a hard task. In

part, these difficulties are due to the large momentum
transferred by thermal collisions between the solution
constituents at ordinary temperatures. Therefore higher
mean forces, which are competitive to diffusion and
other dispersing mechanisms, are required to observe
compression or trapping effects of molecular distributions
in liquid solutions.

Electrophoresis is an interesting effect that has re-
cently attracted attention. Gel electrophoresis [2—4] and

particularly capillary electrophoresis [5,6] are promising
techniques with applications in DNA sequencing, protein
mapping, and general analytical biochemistry [7].

A wide class of molecules exhibit a translational move-
ment when dissolved in aqueous solutions subjected to
electrical fields. This electrophoretic velocity is propor-
tional to the applied electric field. This proportionality
constant is called electrophoretic mobility and is related
to some physical properties of the liquid medium and the
moving molecules. Consequently, in stationary liquids
without mass convection, and subjected to applied elec-
tric fields, the molecular distribution packets move due to
this electrophoresis and spread according to the diffusion
equation.

In this Letter we model and report the results of the dy-
namics in one spatial dimension of these molecular distri-
butions when dissolved in liquids which contain electric
fields and electromagnetic radiation propagating through
these media. Some molecules, e.g. , some phototautomers
[8,9], exhibit a different electrophoretic mobility when at
an excited state. Thus the presence of radiation is re-
sponsible for the nonlinear dynamics in this model. As
we shall see, this causes distribution compression, result-

ing in moving or stationary solitary waves of molecular
distributions. In principle, this effect should be experi-
mentally observed in a great variety of situations, such

Ji —— DiVCt + p—iECi + vCi,

J2 D2VC2 + P2EC2 + vC2

(la)

(lb)

where J; is the molecular current (net fiow of molecules
C; per unit area per unit time) and D; their diffusion
coefficient (taken as a constant). E denotes the electric
field and v the velocity of the liquid medium as a whole
with respect to the frame of reference. It is considered
that molecular diffusion alone is responsible for band
broadening. If radiation is present then absorbing and

decaying terms must be added to the continuity equations

BCi

BCp = —V J, —rC, +kIC, .

= —V Ji + VC2 —kICi, (2a)

(2b)

Here, I = I(r, t) is the monochromatic radiation intensity
(number of photons crossing unit area per unit time)
and k the absorption coefficient of molecules C]. For
simplicity, the absorption coefficient of molecules C2 is

as electrophoresis in viscous fIuids, gel electrophoresis
with radiation transparent gels, or capillary electrophore-
sis. The possibility of covalently binding these molecules
(e.g. , phototautomers) to other molecules gives this effect
special interest, as it can be extended to a wide class of
chemicals and biochemicals.

If only one kind of molecules is dissolved in a liquid
with applied electric and optical fields, then, in terms
of electrophoretic mobility, this molecular distribution
C(r, t) can be seen as the sum of two distributions:
(a) the distribution C2(r, t) which represents the excited
molecules with electrophoretic mobility p, 2 and decaying
rate I and (b) C~(r, t) which represents the molecules
with electrophoretic mobility p, &. The functions C~ and

Cq have units of concentration (number of molecules per
unit volume) and satisfy Fick's first law with the two
following additional velocity terms:
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assumed to be zero in this model. Molecules C2 decay to
molecules Ci at a rate I . Stimulated decaying processes
are considered negligible. If the electric field E is position
and time independent, then, introducing Eqs. (1) in (2), in

one spatial dimension results in the following:

BC( 6 Ci= Di
Bt Bx2

BC2 8 C2= D2
Bx2

BI = akICg.

BC)—vt, + I C2 —kIC, , (3a)
Bx

8C2
v2x

Bx

(3c)

Equation (3c) expresses Beer's law and is added to ob-
tain the I(x, t) variation, vt = p, iF + v, and vz
p, 2E + v . It is supposed that the liquid is transparent
to the monochromatic radiation and that there is radiation
propagating in one direction only. The constant a ex-
presses this direction of propagation. If radiation is propa-
gating from positive to negative values of the x coordinate
then a = +1 and, conversely, if radiation is propagating
from negative to positive values of the x coordinate then

a = —1. The incident radiation intensity is denoted as

Io = 1(a~, t). In this work we consider Dt, D2, Io, I,
andk ~0.

A physical system which closely meets the model sum-

marized in Eqs. (3) is optical fibers with a liquid core.
When radiation is propagating through that optical fiber,
in some operation conditions, Eq. (3c) gives a reason-
able description of I(x, t) Further. more, if a capillary
electrophoresis [5] experiment is carried out in this sys-
tem by subjecting the fiber (capillary) ends to an electro-
static potential difference, then the molecular distribution
dynamics along the capillary should in good approxima-
tion be described by Eqs. (3). In this system the function

C(x, t) [C(x, t) = Ci(x, t) + Cq(x, t)] represents theband
or zone. The velocity term v, liquid velocity with respect
to the capillary wall, is called electro-osmotic velocity [10].
If there are no pressure gradients and if E is constant along
the capillary, then this liquid velocity is constant [11]over
practically the entire cross section area of the liquid core
inside the capillary as predicted using the Debye-Huckel
approximation [10]. Reynolds' numbers for aqueous so-
lutions filling capillaries with r = 25 X 10 cm inter-
nal radius and subjected to velocities of 10 ' cmjs are
of order 10 . Under these conditions the main band
broadening mechanism in this system is diffusion, since
there are no Poisseuille [10]flow terms and turbulences are
minimal.

To analyze the solutions of this set of three coupled
nonlinear partial differential equations, we take first
k = vi, = v2, =0 and I ) 0. Then, Ci(x, t) and

C2(x, t) spread according to the diffusion equation,
the distribution C~ increases at a rate of I C2, and C2
decreases at a rate of —I C2. However, if k ) 0 and

Io ) 0, then the fraction of excited molecules reaches

an equilibrium value. And, if there is a difference
between v~ and v2, then these two distributions will
move at different velocities, and this will cause either
dispersion or the compression of the total distribution
C(x, t). To show this time evolution we integrated
Eqs. (3) using an iterative second order Runge-Kutta
method. In all following integrations the numeri-
cal values used for the parameters in Eqs. (3) are
D& = D2 = 10 cm s ', k = 5 X 10~ cm mol
Io ——16 X 10 molcm s ', and I =250 s '. A
number of N = 5 & 10 ' mol of molecules are dis-
solved in the transparent liquid, and they have a spatial
distribution along x coordinate at time t = 0 given by
Gaussians of standard deviations tT (0) and variances
tT (0). The liquid core of the capillary has a radius
r = 25 X 10 cm.

Figures 1 and 2 show some results of this integration.
Figure 1 shows the variance of the total distribution
C(x, t) vs time for various values of the compression
parameter n = a(vt —v2, ). In this figure the same
initial conditions are used for all integrations, C(x, 0)
being Gaussians with variances 4 X 10 cm . In order
to avoid divergences at time t = 0, the optical field is
turned on smoothly between t = 0 and t = 1 s according
to I(a~, t) = Io(1 —cos srt)/2 This is o.nly a numerical
requirement. But for t ) 1 s then I(a~, t) = Io, Io
is a constant. If n = 0, then the distribution spreads
according to the diffusion equation. If n ( 0, then the
total distribution is dispersed faster than by diffusion
alone. But, if n ) 0, a compression of the distribution
is observed.

l « l I i » i I l i i l I i l l l I l l l l
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FIG. 1. Variance of the total distribution C(x, t) vs time for
many values of the parameter n, n = a(v~, —v2, ). The
same initial conditions are used for all integrations. For n =
0, which means no electrophoretic velocity differences, the
molecular distribution variance grows in time according to the
diffusion equation. For n & 0 the total distribution is dispersed
faster than by diffusion alone. For n ) 0 a compression of the
molecular distribution occurs.
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Figure 2 shows variance of the total distribution C(x, t)
vs time using n = 0.1 cm s ' for all runs. The remain-
ing conditions are the same as in Fig. 1, except for the
initial variances of C(x, O). For all initial conditions
the distribution C(x, t) reaches the same stationary vari-
ance 0, The steady state solutions are solitary waves
(monomodal distributions) which propagate with constant
velocity v„constant area (N/mrz), and without change
of form. The shape of these solitary waves is shown in
the small box at the top in Fig. 2.

From Eqs. (3), it can be shown that this solitary wave
velocity v, along the capillary is given by

vs = » + vz (y/P)(1 —e P)

1 + (y/P)(1 —e P)

where y = klieg/I, P = A + W(ye ),
(kN/vr r ) —y, and W(x) is Lambert's function of
principal branch, W(O, x). In capillary electrophoresis,
the electro-osmotic velocity v may be adjusted in such
a way that solitary wave velocity is zero. From Eq. (4),
this velocity is given by

+ uzF- (y/P)(1 —e ~)
1+ (y/P) (1 — -P) (5)

With this electro-osmotic velocity, the molecular distribu-
tion is trapped in a small region of space. Different kinds
of trapping in the domain of DNA gel electrophoresis are
reported [12]. Fundamentally, this difference resides on
the solitary wave nature of the present trap.
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FIG. 2. Variance of the total distribution C(x, tl vs time
for various initial conditions. Here n = 0.1 cms ' for all
integrations and C(x, 0) being Gaussians with variances: a,
o. = 0.01; b, o. = 0.004; c, o = 0.002; and d, o.
0.001 cm . The remaining conditions are the same as in Fig. 1.
Notice that molecular distribution variance converges to the
same value o, , which is the solitary wave variance. The
solitary wave shape is plotted in the small box at the top, which
shows molecular distribution along the spatial coordinate.

As Eqs. (3) show, if k is small, then the amount of total
molecules N required to obtain small values of cr2 must
be large enough to guarantee at least a little damping of
I(x, t) while traveling through the distribution. But if k
is large, then the amount of molecules N may be smaller.
From Eqs. (3b) and (3c) we conclude that if I is small
then Io must be small too to avoid saturation. But if I' is
large, then Io may be larger. For fixed values of D;, r,
a, k, and N there exists an optimum value [13] for Io/I,
which gives minimum stationary variances. If molecules
C2 absorb significantly, then the term ak2IC2 must be
added to Eq. (3c), and this will enhance the compression
effect.

In the discussions above E and Io are constants. But
E and Io may be varied in time, and the direction of
light propagation a may be changed synchronically with
E, . This allows a large number of layouts, which may
increase the compression effect of the distribution in 1D,
2D, and 3D experiments.

The results above were obtained for liquids which
contain dissolved in it only one component Ci (and
their excited molecules C2). When two components are
present, for example, Ci (and Czl and Ci (and Cz), then
Eqs. (3), (4), and (5) do not remain valid. Equations (3)
are split into five. If only molecules C& and Ci absorb,
then Eq. (3c) will have the additional term ak'IC&. Now
if n ) 0 and n' = a(vi, —vz, ) ) 0, then two solitary
waves with stationary variances o., and o,' may occur,
depending on the parameters r, N, N', Io, k, O', I, and I'.
Consequently, if cr, and o,' exist and have a finite value,
then any two components of a mixture with v, 4 v,',
may be separated. A detailed analysis of the inhuence of
all parameters on 0, , o,', v„and v,' would determine
which two components may be separated in how long
of time [13]. Integration of this last set of five coupled
nonlinear partial differential equations allows us to study
the interesting phenomena of collision [13]. When two
solitary waves of this dynamical system collide they do
not break up and disperse. The two solitary waves emerge
from the collision region with the same area but with
different velocities and stationary variances. In some
aspects these solitary waves behave like solitons. This
integration allows us to calculate a second and very useful
quantity called resolution. The resolution (R) of two
bands is defined [14] as the distance between their centers
of mass divided by 4o., where o. is the average of the two
standard deviations.

Figure 3 shows the resolution of a two-component mix-
ture vs electrophoresis time for three distinct conditions.
All curves of this figure are obtained using the following
conditions: Cz(x, O) = Cz(x, O) = 0, Ci(x, O) = C|(x,O)

[being Gaussians with initial variances tT (0) =
tT' (0) = 0.005 cm ] N = N' = 2.5 )& 10 rnol,
Di = D2 = D~ = D2 = 10 cm s ', I" = I ' =
250s ', I0=20 X 10 8molcm s ', and v]
vi = 10 cms '. Curve a shows the result for a
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perimental difficulties are expected: First, the requirement
of medium transparency is not met in all practical situa-
tions. Second, the need for covalently binding labels (e.g. ,

phototautomers) to molecules such as DNA and proteins
probably restricts its practical applicability. We suggest
the use of Backlund transformations or the inverse scatter-
ing method to obtain exact solutions for Ct(x, t), Cz(x, t),
and I(x, t) in Eqs. (3). To our knowledge, this is the first
example of solitary waves of molecular distributions in

liquids generated by electrophoresis and optical fields.
The author wishes to thank L. C. de Miranda, C. Ter-

mignoni, and H. P. H. Grieneisen for helpful discussions
and comments. This work was partially supported by
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FIG. 3. Resolution of a two-component mixture vs elec-
trophoresis time. Curve a shows the result for n = n' = 0,
which means a normal capillary electrophoresis run; in curve
b, o. =n'=5X10 cms '; and in curve c, a =0 and
rt' = 5 X 10 2 cms '. The initial variances are o. (0) =
o' (0) = 0.005 cm . Higher resolutions are observed under
conditions b and c.

normal capillary electrophoresis run, a = u' = 0. In
this R ~ t'~ as t ~ (X. Notice that higher resolutions
are obtained at least in two situations: b, n = n' =
5 X 10 cms ' and k=0'=5 X 10 cm mol
and in t-, n =0, u'=5 X 10 cms ', and
k=k'=2X 10 cm mol

In conclusion, in the present model molecular distribu-
tion dynamics exhibits solitary wave solutions from which

propagating velocity is deduced, as given by Eq. (4).
Adjusting electro-osmotic velocity according to Eq. (5)
causes molecular distribution to be trapped with a static
distribution. A generalization to multicomponent capil-
lary electrophoresis is a simple step, as shown. In particu-
lar, an increase of resolution of a two-component mixture
electrophoresis is observed in this model. This scheme
may have interesting implications in analytical biochem-
istry and molecular physics studies. Although, some ex-
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