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Glassiness in a Model without Energy Barriers
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We propose a microscopic model without energy barriers in order to explain some generic features
observed in structural glasses. The statics can be exactly solved while the dynamics has been clarified
using Monte Carlo calculations. Although the model has no thermodynamic transition, it captures some
of the essential features of real glasses, i.e., extremely slow relaxation, time dependent hysteresis effects,
anomalous increase of the relaxation time, and aging. This suggests that the effect of entropy barriers
can be an important ingredient to account for the behavior observed in real glasses.

PACS numbers: 75.10.Nr, 64.60.Cn

The nature of the glass transition is a long debated
question of much theoretical interest [1]. It is widely
believed that the glass transition is mainly a dynami-
cal process where the system can remain trapped in a
metastable phase of a finite lifetime depending on the rate
of the cooling process. If glasses are slowly cooled from
the high-temperature region, then it is possible to reach a
crystal phase of very low entropy. But if the system is fast
quenched then it reaches a nonequilibrium regime charac-
terized by the existence of very slow relaxation phenom-
ena. Usually, the origin of these very slow relaxations is
explained by the existence of a large number of metastable
states separated by energy barriers [1]. The heights of the
energy barriers are widely distributed and the system gets
trapped in this metastable phase during its time evolution.

Recently, there have been developments towards a
mean-field theory of glasses. In those cases one studies
systems without quenched disorder with the aid of replica
theory [2]. One finds the existence of a dynamical
transition T~ where the correlation time diverges. Below
that temperature the system is always off equilibrium
and relaxes towards a dynamical state of higher energy.
At a lower temperature replica symmetry breaks and
a large number of states dominate the statics. Below
the dynamical transition temperature the system remains
trapped in a very complex free energy landscape with
huge free energy barriers. In mean-field theory, the height
of these free energy barriers increases exponentially fast
with N and metastable states have an infinite lifetime.
Generally speaking, free energy barriers get contributions
from an energetic part and an entropic part. In real
structural glasses we expect the effects of energy barriers
to be substantially different from that in mean-field theory
because of the existence of nucleation processes [3].
Nevertheless, the effect of entropy barriers should not
be so dependent on the range of the interaction. Then
we expect entropy barriers to be a relevant mechanism in
mean-field as well as in short-range models.

The purpose of this work is to understand the role of
entropy barriers in the behavior observed in structural
glasses. By entropy barriers we mean the existence

of a very small number of directions in phase space
where the energy decreases. We propose a mean-field
model with pure entropy barriers and without metastable
states. The phase space of this model is very simple and
resembles a golf-hole landscape. It mainly consists of Hat

directions in energy with a very small number of channels
where the energy decreases. Although the model has no
thermodynamic transition, it shows a behavior reminiscent
of real glasses.

The model. —Let us suppose N distinguishable iden-
tical particles that can occupy N different states. The
Hamiltonian is defined by

N

H = —2/ B~p, (1)
I'=1

and the energy per site is given by the fraction of occupied
states. The N, are the number of particles that occupy the
state r (r runs from 1 to N), and they satisfy the constraint

(2)

The model defined in Eq. (1) can be mapped into
a Potts model with a large number of states N with
Hamiltonian

N

H= —P [m„[, (3)
r=l

where m, is the magnetization of state r, m, - = N, -
—1.

Looking at the simple Hamiltonian of Eq. (1) we observe
that there is a trivial ground state with energy per particle
eos = —2(1 —1/N) = —2 in the large N limit. In this
ground state all the N particles occupy one state, its
degeneracy being equal to N. At high temperatures we
expect all configurations to have the same probability,
and the energy per particle in this limit is —2[(N—
I)/N] = —2/e. As the temperature is decreased the
number of occupied states decreases while the occupied
states increase their occupation numbers N, . Let us
suppose we introduce a dynamics for the model Eq. (1)
(which gives the equilibrium Boltzmann distribution).
The time evolution of the system as the temperature is
decreased is as follows. The rate of variation of the
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6(m) = e™
where I is an integer. Substitution into Eq. (6) leads to

dA
Z =

number of particles in one state increases due to the
particles which reach the state and decreases due to the
particles which leave that state. The energy decreases
when one state is emptied during the dynamical process.
Because the total number of particles is conserved, as
the number of occupied states decreases the time the

system needs to empty a further state also increases. In
this off-equilibrium situation the occupation numbers N,
of the occupied states perform a random walk and the
energy Eq. (1) decreases very slowly to the static value
at that temperature. This model has no dynamical phase
transition, but it shows the onset of very slow relaxations
in the low-temperature region (below T = 0.2 close to the
maximum of the specific heat). We will see that the main
characteristics of this model are strong dependence of the
energy of the system with the cooling rate, hysteresis
effects, anomalous increase of the relaxation time, and
presence of aging.

Statics of the model. —In order to solve the statics of
this model we have to compute the partition function. We
will suppose that we have N particles and each particle i
is associated with a variable cr; that can take N possible
values according to the state the particle occupies.

The partition function is given by

f N

Z = +exp 2P/BNO (4)N! ( „ i
')'

where the factor N. in the denominator is a normalization
constant in order to make the free energy extensive with
N. The occupation numbers N, satisfy the constraints
g„N„= N and N, = g, , 6 „. Using the relation

N"= P (~)
N, =0 r= 1 N&.

(where the sum runs over the N„ that obey the constraint
P„N„= N), Eq. (4) can be rewritten in terms of occupa-
tion numbers as

N ( N ) (Z= g N exp~2P+BNO 6 gN, —N
&&N„=p) r=i Nr k r=l ) r )

(6)

We use the integral representation for the delta func-
tion,
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Pf = —Max, A(z) with

A(z) = —z + ln(e t' —1 + e').
The saddle point equation is e t —1 = (y —1)e'

where y = e'. The solution to this equation gives a
value y*. The free energy is given by f = —y*/P and
the internal energy u = —2e t /y*e' . We have checked
that the first orders in the high-temperature expansion of
Eq. (4) for the energy coincide with the previous expres-
sion. The energy goes to —2 at zero temperature (see
Fig. 1). The specific heat (first derivative of the energy)
increases approximately like 1/T as the temperature is
decreased and shows a maximum at T —0.20. At high
temperatures the entropy converges to 1 (the number of
&:onfigurations at infinite temperature goes like N /N!,
the dominant term for the entropy being 1). This solution
Iis stable but gives a negative entropy below T = I/P =
0.345. Because the entropy at zero temperature diverges
like ln(T) (the number of configurations in this limit being
iV/N!), . negative entropies are allowed in the model and
there is no sign of a thermodynamic phase transition.

Dynamics of the model —We ha. ve performed Monte
&Carlo (MC) dynamical calculations in this model with the
Metropolis algorithm. It is simple enough to allow very
fast computations for very large values of N. We did
two kinds of numerical experiments. First we performed
annealings starting from a random initial configuration.
The temperature was slowly decreased and the energy was
computed over tp MC sweep (a MC sweep corresponds to
N trials to change the state of the —randomly chosen—
particles). Also we measured the energy starting from
the ground state configuration (only one state occupied)
by slowly increasing the temperature. Results are shown
in Fig. 1 for N = 20000 and for the static energy.
Numerical computations for a larger number of particles
(N = 10.") show that finite-size effects are negligible.
Below T = 0.17 we observe a strong dependence of the
energy on the cooling rate and a slow relaxation of the

exp(taM + 2paMo)l
X expN —I', A + lnl (g)

(,M=o rM!

0,05 0, 1 0, 15
T

0,2 0,25 0,3

The integral in the previous equation can be readily
evaluated by the saddle point method in the large N
limit. The saddle point A = iz gives the free energy

FIG. 1. Energy as a function of temperature for two different
processes (cooling and heating) and three different cooling rates
tp (defined as the number of MC sweeps per temperature step,
this being 0.005). The continuous line is the static energy.
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energy to its equilibrium value. Figure 1 also shows
the strong dependence of the energy on the temperature
change rate during the heating process. The numerical
data merge to the static result at a certain temperature.
This is also the temperature at which the energy departs
from the static value in the cooling procedure. The
dependence of this merging temperature on the time spent
on the cooling rate is an estimate of the relaxation time.

We now want to show that the energy converges to its
equilibrium value. We have studied the relaxation of the
energy at zero temperature starting from an initial random
distribution of particles. Because there are no metastable
states, the system can reach the ground state. We have
measured the time the system takes to reach the ground
state at zero temperature as a function of the number
of particles. We have computed (ln(r)) for different
values of N ranging from 5 to 20 (the average ( )
means average over different random initial conditions).
We find the typical time very well described by 7. =
0.39exp(0.67N). This means that the system takes an

exponentially large time to reach the ground state. We
have not succeeded in deriving an exact expression for
the decay of the energy at zero temperature in the infinite
N limit. The problem, being highly nontrivial, can be
approximated, taking into account the previous result for
the exponentially growing time. We argue that the time
dt the system needs to decrease the fraction of occupied
states in a quantity d(N„/N) scales like

dt = exp(N/N„)d(N„/N) . (10)
For finite values of N this expression yields an expo-

nentially large time for reaching the ground state. The
previous expression means that for a small number of oc-
cupied states the rate of decrease of the energy is also
small (there are less states with more particles per state to
be emptied). Using u = —2(l —N„/N) we get for the
decay of the energy

u (
t = duexp (11)

(2 + u)
where uo is the initial energy at time zero. We have
measured the decay of the energy as a function of time.
While this expression is only approximate, it shows a
remarkable agreement with the numerical data especially
in the large time region over several decades of time. The
relaxation of the energy, far from being of a logarithmic
or algebraic type, is extremely slow as Eq. (11) shows.
The fact that the energy converges to the static result at
zero temperature suggests that a dynamical transition at
a finite temperature is absent. In what follows we will
check this point by computing the relaxation time.

The relaxation time and aging. —To fully characterize
the dynamics of this model we have computed the
relaxation time. We can define two types of correlation
functions, one for the cr; variables, the other one for the
energy state variables. In the regime of low temperatures
the system performs a random walk changing particles
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FIG. 2. Relaxation time as a function of 1/T The continuous.
line is the Vogel-Fulcher law r = A exp[8/(T —To)] with
parameters A = 0.89, B = 0.51, and T0 = 0.02. The dotted
line is the fitted Arrhenius law r = A exp(B/T) with A = 0.63
and B = 0.66. Error bars for the relaxation time are of the size
of the crosses.

from one state to another, and the appropriate correlation
function is given by the state to state energy function,

, [e„(r') —u(t')] [e„(r) —u(r)]

, [e„(r) —u(r)]2

where e„(t) = BJv t, )o and u(t) is the mean energy per
site at time t. We have normalized it in order to have
C, (t, t) = 1. For times r larger than the correlation
time r(T) the C, (t, t') should depend only on the time
difference t' —t (t' ) r) and decay exponentially with
time C, (t, t') —exp[ —(t' —r)/r]. For r « r(T) the
system is off equilibrium, aging effects are present, and
time translation invariance is broken. We have measured
the relaxation time as a function of the temperature
in the low-temperature region. Calculations for this
model are fast enough to allow one to compute several
orders of magnitude in the relaxation time. Results
are shown in Fig. 2. There is no sign of algebraic
divergence at any finite temperature. While a pure
Arrhenius divergence r —exp(A/T) does not fit well
enough (data present a systematic curvature in Fig. 2),
we find that a Vogel-Fulcher law r —exp[A/(T —Tn)]
[4] describes extremely well the increase of the relaxation
time. The value of To = 0.02 is stable to include more
points in the fit and is definitely better than the Arrhenius
one. We do not attach special physical meaning to the
value of To besides the indication of an anomaly in
the divergence of the relaxation time. This is different
from the case of models where metastability is present
where To can be identified as a thermodynamic transition
temperature [5].

The dynamical transition in this model takes place at
T = 0, and we expect for t finite the correlation function
of Eq. (12) to display aging. Introducing the waiting
time t and redefining the times t = t, t' = t + t
in Eq. (12) we find that C,(t, t + t) is pretty well
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FIG. 3. C,(t, t + t) for N = 100000 as a function of t/t
for different I, values at zero temperature.

described by the scaling law

C,(t, t + t) = f(t/t ). (13)

Similarly to other mean-field models [6,7], it is very
plausible that this scaling behavior is exact in the large
t limit at least at zero temperature. Results are shown
in Fig. 3. Data collapse in a single curve; the scaling
function f of Eq. (13) scales like f(x) = 0.78x O7O for
large values of x. If we define uFA = lim, C,(t, 2t )
we find that this value jumps discontinuously to a finite
value =0.58 at T = 0 being zero at any finite T in
agreement with the absence of any finite T dynamical
transition.

We can now summarize our results. We have intro-
duced a simple model without energy barriers (i.e., without
metastable states) and without disorder. We have exactly
solved the statics while the dynamics has been clarified by
numerical computations of the model. Relaxation is ex-
tremely slow at low temperatures due to the presence of
high entropy barriers, i.e., the existence of small number
directions in phase space where energy decreases. While
the system has no thermodynamic transition, it displays
the main features of real glasses, i.e., extremely slow re-
laxation, time dependent hysteresis effects, anomalous in-
crease of the relaxation time, and aging. This suggests that
the presence of activated energy barriers is not the only
possible ingredient needed to find a Vogel-Fulcher behav-
ior (and eventually Arrhenius behavior) for some transport
quantities. The fact that the relaxation time can be nicely
fitted to a Vogel-Fulcher law in this model is an indica-

tion that the existence of anomalies in the relaxation time
can be affected by entropy barrier effects. The behavior
observed in this model suggests that it is not easy to dis-
entangle the effects of energy barriers from the effects of
entropy barriers, at least experimentally. Real glasses do
have energy barriers, and it is clear that this model can-
not explain all the experimentally observed features (for
instance, existence of a crystallization transition). Inter-
estingly enough, it presents the main dynamical features
observed in structural glasses. The presented model is of
mean-field type because a spatial arrangement of the states
is absent and it is possible to include spatial correlations.
Also one can consider generalizations of this model, for
instance, defining the energy as given by the number of
occupied states above a certain finite level k. In this last
case we expect to find similar results to those presented
here.
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